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Abstract-Assuming standard conjectures we show that there exist elliptic curves with 
Tate-Shafarevich group of order essentially as large as the square root of the conductor. We 
present some concrete examples of such elliptic curves, related to good examples for the 

ABC-Conjecture. 

1. Introduction 

RECENTLY Goldfeld and Szpiro [lo] posed the following conjecture. 

CONJECTURE 1 (Goldfeld-Szpiro) For elliptic curves over Q with Tate- 
Shafarevich group III and conductor N one has 

(1111 << N1’2+E. (1) 

Goldfeld and Lieman [9] proved some results in the direction of this 
conjecture. 

For modular elliptic curves that satisfy the Birch-Swinnerton-Dyer 
Conjecture, Goldfeld and Szpiro [lo] show that the bound (1) is 
equivalent to the Szpiro Conjecture IA/ << N6+‘, where A denotes the 
minimal discriminant of the elliptic curve. It is known that the Szpiro 
Conjecture implies a variant of the ABC-Conjecture. This latter implica- 
tion is proved by considering for an example of coprime A, B, C E N with 
A + B = C the corresponding Frey-Hellegouarch curve 

y2 =x(x - A)@ + B), (2) 

see e.g. Osterl6 [22] and Vojta [28]. Indeed, if N(A, B, C) is the product 
of the primes dividing ABC, then the conductor N of the Frey- 
Hellegouarch curve (2) equals N(A, B, C) up to a bounded power of 2, 
and its minimal discriminant A equals (ABC)2 up to a bounded power of 
2. In this paper we reserve the word Frey-Hellegouarch curve for a curve 
(2) with coprime A,B E IU Note that such curves are semi-stable at all 
odd primes, so that they are modular indeed, by the celebrated results of 
Wiles [30] and Diamond [7]. 

For an example of A + B = C which is ‘good’ for the ABC-Conjecture, 
i.e. with N(A, B, C) small compared to C, the Frey-Hellegouarch curve 
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(2) has relatively small conductor. One might hope that its Tate- 
Shafarevich group III is normally sized, whatever that may mean, and 
thus is large compared to the (square root of the) conductor. In this note 
we will show, assuming some standard conjectures, that that is indeed 
true for certain quadratic twists of this Frey-Hellegouarch curve. We can 
formulate the following conjecture, which is complementary to the 
Goldfeld-Szpiro Conjecture 1, in the sense that it asserts that the bound 
(1) is best possible, apart from E)s. 

CONJECTURE 2 For every E > 0 there exist infinitely many elliptic curves 
over Q with 11111 >> N1’2-E. 

In fact, as we shall see below, the curves that we are dealing with have 
rank zero, all their 2-torsion rational, and are ‘almost semistable’. 

The implicit constant in the inequality in Conjecture 2 depends a priori 
on E, but this can be removed. Let E > 0 and c > 0 be given. Conjecture 2 
implies the existence of a constant c’ > 0, depending on E, such that there 
are infinitely many curves with 11111 > c’N~‘~-&‘~. Note that since there are 
only finitely many curves with given conductor, infinitely many of these 
curves have N > (c/c’)~“, and thus 11111 > cN~‘~? Thus Conjecture 2 
implies the following. 

CONJECTURE 3 For every E > 0 and every c > 0 there exist infinitely 
many elliptic curves over Q with 11111 > cN”~-‘. 

We also formulate a similar conjecture in terms of the minimal 
discriminant instead of the conductor. 

CONJECTURE 4 For every E > 0 there exist infinitely many elliptic curves 
over Q with 11111 >> A1’12-E. 

We will show that these conjectures follow from a few standard 
conjectures. The situation is the best in the case of Conjecture 4, which 
depends only on the Birch-Swinnerton-Dyer Conjecture in the rank zero 
case. This latter has been ‘almost proved’ by Kolyvagin [14], [15]. 

The idea behind our proofs is more or less constructive, so that we can 
actually try to compute curves with big Tate-Shafarevich groups. We 
present some concrete examples, coming from good examples for the 
ABC-Conjecture. In searching for concrete examples one should take 
into account not only twists of Frey-Hellegouarch curves, but also all 
curves in the isogeny classes of these twists. Notice that a Frey- 
Hellegouarch curve has all its 2-torsion rational, and the same is true for 
its quadratic twists, but not necessarily for the other curves in its isogeny 
class. Conversely, any curve that has all its 2-torsion rational is a 
(quadratic twist of a) Frey-Hellegouarch curve. 

The best example (in the sense that it has the largest 11111, and also in 
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the sense that it has the largest value of iIIII/qN) that we found is the 
curve 

y*+xy +y =x3+x2 

-16272564754316406252451~ -798973042220714620227331980906826. 

The curve has conductor N = 51636585, and the order of III is (conjectu- 
rally) 50176 = 224*. So the ratio IIIII/vN is large indeed, namely about 
6.893. We found a number of other curves with lIIIl> VN. Such curves 
were already known from the tables of Cremona, [6]. His best example 
(again with largest 11111 and largest lIIIl/qN) is the curve coded 546F2, 
with III11 = 49, N = 546, hence IIIII/dN = 2.097. Brumer and McGuinness 
[3] mention a curve with (IIII = 289, but they do not give the conductor, 
only that it is prime and at most lo*, so all we know is that 
IIIII/vN > 0.0289. 

On the theoretical side it has been known for a long time that 11111 is 
unbounded. Cassels [4] was the first to show this, and see also Boiling [l], 
Kramer [16], and Mai and Murty [20]. Cassels, Boiling and Kramer did 
not consider the conductors. Cassels and Boiling obtain their results by 
looking at quadratic twists by more and more primes. Each time a prime 
is added, they win a constant factor in JIIIJ, but the conductor goes up by 
the square of the prime. Thus it seems that at best their method gives 
elliptic curves with 11111 >> NC/log log N for some constant c > 0, by the Prime 
Number Theorem. Kramer has a somewhat different strategy, and finds 
semistable curves with discriminant m(16m + 1) and 11111 3 22k-2, where k 
is the number of prime factors of 16m + 1. Again it seems that at best this 
yields 11111 >> NC/log log N for some constant c > 0. Hence our Conjecture 2 
gives a better lower bound than Cassels, Boiling and Kramer, but it relies 
on unproved assumptions, whereas the results of Cassels, Boiling and 
Kramer are unconditional. Mai and Murty [20] have shown, assuming 
only the Birch-Swinnerton-Dyer Conjecture, that there exist infinitely 
many elliptic curves with 11111 >> N*‘4-E. They too consider quadratic 
twists, and show that twisting by 4 causes the mean of q-‘/*IIIIql for 
q < Q to be >>Q-” and <<Q”, whereas the conductor is essentially q*. In 
particular this means that their conductors are ‘almost square’. In 
contrast, the curves we find below are ‘almost semistable’, i.e. the 
conductors are ‘almost squarefree’. 
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2 Conjectures 

For an elliptic curve E defined over Q we adopt the following notations 
(for precise definitions see the standard textbooks such as those by 
Knapp [12] and Silverman [23], [24]: 

III = the Tate-Shafarevich group, 

N= the conductor, 

A = the minimal discriminant, 

w  = the real period, 

Sz = o or 20, according to E([W) being connected or not, 
T= the order of the torsion subgroup, 

Y = the rank, 
R = the regulator, 

L(s) = the L-series, 

c = the Tamagawa number, also called fudge factor. 

The following conjectures are generally believed to be true but 
hopeless to prove. 

CONJECTURE 5 (Birch-Swinnerton-Dyer) 

lim (s - l)-%(s) = cQT?I1l’ . 
S--+1 

CONJECTURE 6 (Szpiro) A << N? 

Furthermore we will need the following conjecture (cf. Goldfeld and 
Szpiro [lo]. 

CONJECTURE 7 (Riemann-hypothesis). The Riemann-hypothesis for the 
Rankin-Selberg zeta-function associated to the weight $ modular form 
associated to E by the Shintani-Shimura lift is true. 

For the sake of completeness we mention the ABC-Conjecture. For A, 
B, C E ItI we define 

N(A, B, C) = I-I P* 
primes p 1 ABC 

CONJECTURE 8 (ABC-Conjecture, Masser-Oesterle) For coprime A, B, 
C E IV with A + B = C one has 

C << N(A, B, C)‘+‘. 
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Note that for coprime A, B, C, the conductor N of the Frey- 
Hellegouarch curve (2) equals N(A, B, C) times an absolutely bounded 
power of 2. 

Various relations between the above mentioned conjectures are 
known. Assuming the Birch-Swinnerton-Dyer Conjecture, the Szpiro 
Conjecture 6 is equivalent to the Goldfeld-Szpiro Conjecture 1 (see [lo]). 
The Szpiro Conjecture 6 is equivalent to a somewhat weaker form of the 
ABC-Conjecture 8 (the ABC-Conjecture 8 itself is equivalent to the 
so-called Generalized Szpiro Conjecture max {IAl, @1} << N6+‘), see 
Oesterle [22] and Vojta [28]. At first sight this is true only for the cases 
where 16 I ABC, but as Noam Elkies explained’, this covers all cases for 
the ABC-Conjecture, by considering A4 + ( C4 - A4) = C4 if 16 [ABC 
(where, without loss of generality, B is assumed to be odd). 

We will need the Birch-Swinnerton-Dyer formula (3) only in the case 
of rank Y = 0. In this case major steps towards its proof have been made 
by Kolyvagin [14], [15]. However, we need almost the full strength of the 
exact formula (3), which still is not shown to be true in the rank zero 
case. 

The main results of this note can now be stated as follows. 

THEOREM 1 Assuming Conjecture 5 (in the rank zero case) and 
Conjectures 6 and 7, Conjecture 2 follows. 

THEOREM 2 Assuming Conjecture 5 (in the rank zero case), Conjecture 
4 follows. 

3 Sketch of the proofs 

In this section we sketch the proof of Theorem 1, postponing the details 
and the proof of Theorem 2 to Section 5. ‘Our starting point is the 
Birch-Swinnerton-Dyer formula (3) for a Frey-Hellegouarch curve (2) 
associated to an example of A + B = C with, say, C > N. Such examples 
exist, as can easily be shown (simply take A = 1, B = 32k - 1, or be more 
intelligent and see Stewart and Tijdeman [26], who prove the existence of 
infinitely many examples with 

C > N(A, B, C) exp (4 - S) 
dlog N(A, B, C) 

log log N(A, B, C) > 

for every 8 > 0). 
We want to estimate 11111 by estimating all the other quantities 

occurring in the Birch-Swinnerton-Dyer formula (3). The order T of the 
torsion group is at least 1, and so does not bother us at all. The period Q, 

’ Private communication. 
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which in the case of Frey-Hellegouarch curves always equals 20, is an 
elliptic integral, which can .be estimated by 

1 
0 << - VC log c* 

Hence Q << N-1’2+E. Even if A + B = C is not a ‘good’ example, we still 
have C > (ABC) f 3 N(A, B, C);, hence Q << N-1’6+E. In a sense it is these 
small periods, occurring for all Frey-Hellegouarch curves, that make their 
Tate-Shafarevich groups big. 

Upper bounds for the regulator and lower bounds for the value at s = 1 
of the rth derivative of the L-series are not known (but see [18] for 
conjectures, which seem to be of no use to us). However, both problems 
can be solved at once by changing from the Frey-Hellegouarch curve (2) 
itself to an appropriate quadratic twist. By the curve twisted by a 
(squarefree) LJ E tV we mean the elliptic curve 

qy2 =x(x -A)@ + B). (4) 

We denote the L-series of this twist by L,(s). Following Kohnen and 
Zagier [13] (see [8] and [lo]) it can be shown that 

c L,(l) >> N2, 
qGN* 

(5) 
and if one assumes Conjecture 7, then this can be improved to 

c L,(l) >> N”. 

Here the sums are taken over the 4’s for which the quadratic Dirichlet 
character has a prescribed value at - 1, depending only on A, B, C. 
Anyway, there is a quadratic twist by a small 4 for which 

L,(l) >> 1. (6) 

It follows that L,(l) # 0, so that according to the Birch-Swinnerton-Dyer 
Conjecture 5 the rank Y of the twisted curve must be zero. Now we can 
kill two birds with one stone, since in the first place we have with (6) a 
lower bound for the left hand side in the Birch-Swinnerton-Dyer formula 
(3), and in the second place the regulator is trivial, namely R = 1. (In fact, 
we almost killed a third bird, by Kolyvagin’s work [14], [15].) The 
twisting will change the period o by a factor of about dq (but only to our 
advantage), and the conductor N by a factor at most q2 (to our 
disadvantage). This is the price that we pay for killing the birds. But if we 
also pay the price of assuming Conjecture 7, the conductor changes at 
worst by a factor of order NE. 
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It remains to estimate the Tamagawa number c. We cannot use trivial 
estimates here, because we have to deal with the possibility that the 
reduction at all the bad primes is split multiplicative, causing for each bad 
prime p a (possibly large) contribution of ord,(A) to the Tamagawa 
number. It seems to be folklore that c cannot be too large for arbitrary 
elliptic curves, but no proof was found in the literature. Moreover, when 
asked, experts seemed to guess a much better bound (e.g. c << log A) than 
we can prove. Therefore we spend the next section in analytic number 
theory to show that c < AK/log log * for some absolute constant K > 0. This 
is worse than any fixed large power of log A, but better than any fixed 
small positive power of A. With the Szpiro Conjecture 6 this thus implies 
c << N”, which is enough for our purposes. 

Now, on putting all our estimates together with the Birch-swinnerton- 
Dyer formula (3), Theorem 1 follows. 

4 Bounding the Tamagawa number 

For a positive integer n we define c(n) to be the product of the exponents 
in the prime decomposition of n. We need a bound for c(n), but could 
not find one in the literature. 

LEMMA 1 For any n E IV we have 

c(n) << NYC1 +E)‘log log n . 

P. Erdos, who in a letter to the present author dated September 3,1996 
log 3 

conjectured this result, noted that the constant - 
3 

cannot be improved, 

as the cubes of the products of the first Y primes show. The proof below 
mimics a similar proof for the function d(n) (the number of divisors of 
n), as given in Theorems 315-317 of [ll]. This line of proof was pointed 
out to the author by Jean-Marc Deshouillers. 

Proof. Let E > 0 be given. Put 6 - - y (1 + &)/log log n. For the 

primes p > 3 1’(3s) dividing n we use that for n E N we have 

n 
Snd -%l. 
p 3n’3 

For the primes p s 31(3s) dividing n, of which there are at most 31’(3s), we 
use 

1 
&exp - 
P ( > Slog2 l 
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If the prime decomposition of n is given by n = n pri, then we have 
c(n) r rzi 

i=l 

-- - 

ns 
rI x, and thus 

i=lpi ’ 

1 
log c(n) - S log n C 31’(36) - 

Slog2 

wg 4 - - 
l’(l +M log log n < log 3 1 log n 

(log 2)(log 3)(1 + $E) 3 ( > 2 ’ log log n 

for n large enough, and the result follows. 
Now we are in a position to prove a bound for the Tamagawa number. 

THEOREM 3 For the Tamagawa number c of any elliptic curve defined 
over 62 we have 

c < AK@%? 1% A) 

for some absolute constant K. 

Proof: We have c = fl cP, where the product runs through the bad 

primes, i.e. the primes p’that divide A, and cP is given in Tate’s algorithm 
(see [27] or [24]). F rom this algorithm it becomes clear that 

cP G max (4, ord,(A)} 

(see also [23], Corollary C.15.2.1). Let A = A1A2, where A, contains the 
factors from the prime decomposition of A with exponents at most 4. Let 
s be the number of those factors. Then it follows that 

c 6 4”c(A,). 

If2=pl<pz<- . <ps are the first s primes, then certainly 

log A1 a i lOgpi a i log (i + 1) 
i=l i=l 

> I logxdx=(s+l)log(s+I)-s>K,slogs 

for some constant ~~ > 0. It follows that for some constant ~~ > 0 we have 

S < K2 
log Al 

log log Al ’ 

so that for a constant ~~ > 0 
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Here in the last step we used ee < A1 s A. But if A1 < ee then s 6 2, and 
the required inequality is trivial. Lemma 1 implies the existence of a 
constant ~~ > 0 such that 

c(A2) < A;&%= 1% A2 < A’d’g 1% A, 

where again we used that ee < A2 G A. But if A2 < ee then c(AZ) G 3, and 
the required inequality is again trivial. The result now follows with 
K = K3 + K4. 

An immediate consequence of Theorem 3 is the following. 

COROLLARY. If the Szpiro Conjecture 6 is true, then the Tamagawa 
number of any elliptic curve defined over 62 satisfies 

c << N”. 

Proof. From Theorem 3 and the Szpiro Conjecture 6 we clearly even 
have 

c << N’6” +&)/(h 1% N) . 

5 Details of the proof of Theorems 1 and 2 

In the proof below, treating Theorems 1 and 2 at the same time, the small 
positive number E will change its precise meaning almost every other line 
and sometimes within one line, but this should not cause difficulties. We 
use notations as given in Section 2. Always N will be assumed to 
approach 00. 

Proof. Let A,B,C be coprime positive integers such that A + B = C 
and C > N(A, B, C). Such triples exist with arbitrarily large N(A, B, C), 
by the results of [26]. Let E be the Frey-Hellegouarch curve (2). Then N 
is squarefree apart from a possible power of 2, which is at most 2! Thus 
certainly C >> N, because N(A, B, C) is the squarefree part of N. 

For the quadratic twist E, of E by 4, defined by (4), we denote all the 
parameters by the subscript q. By Conjecture 7 (see [13] and [lo]) there 
exists a 4 < N”, that we may take squarefree, such that E, has rank rq = 0 
and L,(l)>>l. Hence R, = 1, and also of course Tg 3 1. By the 
Birch-Swinnerton-Dyer formula (3), the Szpiro Conjecture 6 and the 
Corollary to Theorem 3 we thus have 

Notice that the tran sformation of variables (x, y >:= (P, 4 
tion (4) shows that E, can also be described by the equation 

(7) 

‘y) in equa- 

thus equation (2) with A,B multiplied by q. It now follows that apart 
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from the power of 2, the conductor N4 of the twisted curve is lcm (N, q2), 
and the difference in the power of 2 is at most 28. Hence 

Nq s 28Nq2 << N1+E. (9 

It remains to estimate Sz, = 20,. We have for the Frey-Hellegouarch 
curve (2) o = ol, with 

0 

I 

dx 
01 = 

-B 
~.x(x - A)@ + B) 

By equation (8) we now have 
0 

I 

dx u 
*9 =u 

-qB h(x - qA)(x + qB) = G ml s uo19 

where u E IV is the scaling factor that is introduced in turning the model 
(8) into a minimal one. We first estimate wl, and then u. 

If A > B then we put cy = B/A, and we have 

1 O 

I 
a cc)1 =- 

VA 
dL2 -.j 

-ff dE([+cu)(E-l)< xPN ’ 

where we used the substitution x = A& that A > @, and that 

for any cy E (0, 1). 
IfAcBthenweputa = A/B, and we similarly have 

1 1 a 1 

01 = 
G 

I 
0 

q5(5 + a)(1 _ 5) << *log c << N-*‘2+F9 

because 
1 

I 
dS 1 

o d[([ + a)(1 - 5) = logi + O(l) 
as CY J 0, 

q <<N-i+‘. (10) 
To estimate the scaling factor u we study the algorithm for finding a 

minimal model of a curve, due to Tate. We use the version by Laska [19], 
as given by Cremona [5]. We denote the “c~” and “A” of the models (4), 
(8) of the curves E, E, by respectively cg,l, c6,q and A,, Aq. Then 

1 B 
and -= ---BBC. 

CY A 
So we obtain 

c,,, = 32(A - B)(A + 2B)(2A + B) c6,q = q3c6,1, 

Al = 16A2B2(A + B)2, A9 = q6A1. 



A + B = C AND BIG III’S 115 

The odd primes p such that p& 4 , or p{A4 do not contribute to the 
scaling factor u. If p is an odd prime such that p 1 c6,q and p 1 A4, then the 
fact that A, B are coprime implies that p 1 q. But 4 is squarefree, so that 
ord,(q) = 1, and thus 

ordp(c6,q) = 3 + 04(c6,1), ordP(Aq) = 6 + ordP(A,). 

But, as noted above, if p 1 A,, then the coprimeness of A, B implies that 

Pt c(j 1. It fOllOWS that , 

ord,(gcd)c&, Aq)) s 6, 

and by Laska’s algorithm this means that p does not contribute to the 
scaling factor u. Finally we have to treat p = 2. Reasoning as above we 
see that if 4 1 AB(A + B) then ord2(c6,1) = 6, and by 4;( 4 this means that 

ord*(gcw&, Aq)) s 6 + ord,(gcd(cz 1, Al)) s 18, , 

so that the contribution of the prime 2 to u is at most 2. 
Our conclusion is that u s 2, and thus by (10) and (9) that 

aq = 20, s 4wl << N-t+” << N;i+&. 

With (7) this proves Theorem 1. 
To prove Theorem 2, notice that if we allow 4 to be as large as N*, 

then (5) guarantees that L,(l) >> 1, without assuming Conjecture 7. 
Similarly as above, using Theorem 3 (but not its corollary, so we also 
avoid Conjecture 6), we obtain 

VC 
III&I >> A;%,’ >> A;&- 

. 

log c’ 

By N << A we have A4 6 @A << N**A << A13, and thus by A s (ABC)* < C6 
we find 

]III,I >> A h-E , 

as required. cl 

6 Examples 

There are lists available of good examples of coprime A, 23, C E N such 

that A + B = C. Here, an example is called good if 
log c 

lqw(A, & c> 
> 1.4, 

say. The first such list was published by the present author [29], more 
recent ones in [2] and [21]. In July 1995 Browkin and Brzezinski 
distributed by e-mail an updated list with all known 115 examples of 

log c 

log N(A, B, c) 
> 1.4. 
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Using software such as Cohen’s Pari, Connell’s Apecs and Cremona’s 
Mwrank, we can try to compute (analytically) the value for the order of 
III for the curves in the isogeny classes of twists of the Frey-Hellegouarch 
curves (2) corresponding to these examples. We did so for a number of 
examples, with results as in the Table at the end of this paper. We found 
11 curves with 11111 >> VN, which we list below. Here al, a2, a3, a4, a6 are 
the coefficients of a global minimal model y2 + alxy + a3y = x3 + a2x2 + 
a4x + a& (See Table opposite). 

Note that Cremona [6] also found several curves with [III1 > VN, the 
best one being y2 + xy = x3 - 3674496~ - 2711401518, coded 546F2, with 
(III1 = 49, N = 546, hence (III(/vN = 2.097. 

Further note that none of the curves in the table above are themselves 
Frey-Hellegouarch curves (2) or twists of Frey-Hellegouarch curves (4), 
although they are isogenous to such curves. The best example of a 
(twisted) Frey-Hellegouarch curve that we found comes from the best 
example of A + B = C, due to E. Reyssat, which is 

A = 31° l 109, B = 2, C = 235, 

with N(A, B, C) = 15042, so that 
log c 

lqw(A, B, C) 
= 1.629911. The corres- 

ponding Frey-Hellegouarch curve 

y”=x(x- 6436341)(x + 2) = x3 - 6436339x2 - 12872682x 

has rank zero, N = 240672, and 11111 = 361, so (IIII/dN = 0.7358. 
In a Table at, the end of this paper we present the results for some 

other isogeny classes of twists of Frey-Hellegouarch curves for good 
examples of A + B = C. The number refers to the list of Browkin and 
Brzeninski dated July 15, 1995, that was distributed via e-mail. We 
always take A < B, as the corresponding Frey-Hellegouarch curve with A 
and B interchanged is its twist by -1. Notice that all other permutations 
and sign changes of A, B, C lead to curves isomorphic to one of these 
two. For many examples of A + B = C we considered for a few twisted 
Frey-Hellegouarch curves (4) the complete isogeny classes. The criteria 
for an isogeny class of curves to make the Table were: 

l A, B, C appears in the list of Browkin and Brzeninski, 
. lqle 
. NC lo”, 
l the rank is zero, 
l there is a curve in the class with 11111 > max (1, dN/lOO}, 
l the computations could be done in a few minutes on a personal 

computer. 
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One effect of these criteria is that the asymptotics cannot be properly 
illustrated, as for physical reasons we cannot do computations for very 
large conductor. Another effect is that we seem to have biased for small 
Tamagawa numbers. We found a number of curves with a large 
Tamagawa number, causing a small (1111, that thus did not make the 
Table. Indeed, we feel that for rank zero curves with small conductor, say 
N< 1012 or so, the Tamagawa number might be the main factor 
determining 11111. Finally, we omitted the isogeny classes we found with 
all curves having (1111 = 1 and N < 104, although they do have (IIII > 
~PJ/lOOO. Notice that all the curves in Cremona’s tables [5] satisfy 
11111 > VN/lOO. 

For each curve we tried to compute the conductor N, the rank Y, the 
order of the Tate-Shafarevich group III, the period Q = 20, the value 
L(l), the order T of the torsion group, and the Tamagawa number c. We 
give these numbers for the twisted Frey-Hellegouarch curve (4), and for 
the curve in the isogeny class with maximal 11111. If there are more curves 
in the isogeny class having maximal 11111 then we give data for the curve 
with minimal Tamagawa number. In no case do we claim to have proved 
that the entries for 11111 in our Table are correct, only that they are 
probably true under the Birch-Swinnerton-Dyer Conjecture (but notice 
that our numerical results do not depend on other conjectures than the 
Birch-Swinnerton-Dyer Conjecture in the rank zero case). All our results 
are numerical in the sense that they have been obtained by analytic 
techniques using approximations of L-series. 

Note that isogenous curves do have the same L-series, but may have 
different torsion groups, periods, Tamagawa numbers and 111’s. This 
phenomenon had been noted before, and is not rare at all (see e.g. 
Cremona [6]), as it seems to be in the more or less comparable situation 
of non-isomorphic number fields with the same zeta-functions but with 
different class groups, of which the first examples were found only 
recently, cf. [25]. 

Finally we note that, although usually in an isogeny class there is only 
one curve of the form (2), there are a few cases in which there are two 
isogenous Frey-Hellegouarch curves of this form, thus linking two 
examples of A + B = C that at first sight seem to be unrelated. A curve 
defined by an equation of type (2) has all its 2-torsion rational, and 
conversely, any curve with only rational 2-torsion is defined by an 
equation (2) (with A, B not necessarily coprime), hence is a (twisted) 
Frey-Hellegouarch curve of some example of A + B = C. Kubert [17] has 
parametrized occurrences of isogenous pairs with rational 2-torsion. 
Studying these parametrizations revealed the following results for isogenies 
of degree 2 and 3. We give the results in terms of examples for A + B = C. 
ApairA+B=C,A’+B’= C’ with isogenous Frey-Hellegouarch curves 
can be called an isogenous pair of examples of A + B = C. 
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Isogenies of degree 2 correspond to 

A =x2, B=(y-x)(y+x), c=y2, 

with coprime x,y E IV. Then the isogenous example is 

with d = 2 if both x and y are odd, and d = 1 otherwise. In the list of 
Browkin and Brzezmski this happens at the numbers 20, 26, 46, 76, 86 
and 87 (maybe with A and B interchanged). The numbers 86 and 87 are 
isogenous, and the A’+B’= C’ for the other examples have 

log C’ 

logN(A’, B’, C’) 
< 1.4, so do not appear in their list. The number 26 is a 

special example, because here also B’ happens to be square. So 
interchanging A’ and B’ yields a third isogenous example. 

Isogenies of degree 3 correspond to 

7 c = (x -y)(x+)3, 

with coprime x, y E IY, and d = 3 if 3 1 x + y, and d = 1 otherwise. Then 
the isogenous example is 

x - 2y A’ =x3- 2x -y 

d 
9 B’=y’d’ c’=(x-y)3x+. 

In the list of Browkin and Brzezinski this happens at number 31. The 

isogenous example A’ + B’ = C’ has 
log C’ 

logN(A’, B’, C’) 
< 1.4, so does not 

appear in their list. 
In the following table we present the isogenous paris of examples for 

A + B = C that we found. Notice that by definition N(A, B, C) = 

N(A’, B’, C’), and that if 
log c log C’ 

logN(A B, C) 
is large, then so is 

log N(A, B, C) l 

A B C 
log c 

A’ 
B’ C’ 

log C’ 
no. 

logN(A, B, C) logN(A’, B’, C’) deg 

20 7* 

26 1 

7’ 
31 3” * 73 

46 1 
76 7* 

86 314 

87 5* 

2 IO.11 .53* 34.9 1.4741 534 
2” . 3 .5* 74 1.4557 26 - 3* 

2h * 3* 54 1.2039 34 
2’?23?59 5”.19’ 1.4509 3’” . 7 

24 a367 - 547 5’ - 7* 1.4391 3 
14 

2 l7 * 1812 3x * i309* 1.4189 1814 

26-5-137. 136 1.4137 5* 

37 - 13” 28 * 137* 1.4133 3 
14 

3* - 54 * 7 

7” 

5* * 7 

27 - 23 - 593 

54 * 7 

34 * 7 * 809 

37 - 133 

26-5- 137 

2 16. 112 

54 

2* 

5” * 19’ 

2” * 547* 
2 30 

2x * 137* 

136 

1.3560 2 

1.2039 2 

1.0370 2 

1.3140 3 

1.3201 2 

1.3302 2 

1.4133 2 

1.4137 2 
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