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Abstract—Assuming standard conjectures we show that there exist elliptic curves with
Tate-Shafarevich group of order essentially as large as the square root of the conductor. We
present some concrete examples of such elliptic curves, related to good examples for the
ABC-Conjecture.

1. Introduction

RecenTLY Goldfeld and Szpiro [10] posed the following conjecture.

ConJecTUre 1 (Goldfeld-Szpiro) For elliptic curves over Q with Tate-
Shafarevich group 111 and conductor N one has

[T «< N7, 1)

Goldfeld and Lieman [9] proved some results in the direction of this
conjecture.

For modular elliptic curves that satisfy the Birch-Swinnerton-Dyer
Conjecture, Goldfeld and Szpiro [10] show that the bound (1) is
equivalent to the Szpiro Conjecture |A|<« N°*%, where A denotes the
minimal discriminant of the elliptic curve. It is known that the Szpiro
Conjecture implies a variant of the ABC-Conjecture. This latter implica-
tion is proved by considering for an example of coprime A, B, C € N with
A + B = C the corresponding Frey-Hellegouarch curve

y?=x(x = A)(x + B), @

see e.g. Osterlé [22] and Vojta [28]. Indeed, if N(A, B, C) is the product
of the primes dividing ABC, then the conductor N of the Frey-
Hellegouarch curve (2) equals N(A, B, C) up to a bounded power of 2,
and its minimal discriminant A equals (ABC)* up to a bounded power of
2. In this paper we reserve the word Frey-Hellegouarch curve for a curve
(2) with coprime A,B e N. Note that such curves are semi-stable at all
odd primes, so that they are modular indeed, by the celebrated results of
Wiles [30] and Diamond [7].

For an example of A + B = C which is ‘good’ for the ABC-Conjecture,
i.e. with N(A, B, C) small compared to C, the Frey-Hellegouarch curve
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(2) has relatively small conductor. One might hope that its Tate-
Shafarevich group III is normally sized, whatever that may mean, and
thus is large compared to the (square root of the) conductor. In this note
we will show, assuming some standard conjectures, that that is indeed
true for certain quadratic twists of this Frey-Hellegouarch curve. We can
formulate the following conjecture, which is complementary to the
Goldfeld-Szpiro Conjecture 1, in the sense that it asserts that the bound
(1) is best possible, apart from ¢’s.

CoNJECTURE 2 For every € >0 there exist infinitely many elliptic curves
over Q with |ITI| > N'2¢,

In fact, as we shall see below, the curves that we are dealing with have
rank zero, all their 2-torsion rational, and are ‘almost semistable’.

The implicit constant in the inequality in Conjecture 2 depends a priori
on &, but this can be removed. Let € >0 and ¢ > 0 be given. Conjecture 2
implies the existence of a constant ¢’ >0, depending on ¢, such that there
are infinitely many curves with [III| > c¢’N"?~¢"%. Note that since there are
only finitely many curves with given conductor, infinitely many of these
curves have N >(c/c’)”¢, and thus [III|>cN"?>7¢. Thus Conjecture 2
implies the following.

CoNJECTURE 3 For every € >0 and every ¢ >0 there exist infinitely
many elliptic curves over Q with [I1| > ¢N">7¢.

We also formulate a similar conjecture in terms of the minimal
discriminant instead of the conductor.

CONIECTURE 4 For every € >0 there exist infinitely many elliptic curves
over Q with |III| > A%,

We will show that these conjectures follow from a few standard
conjectures. The situation is the best in the case of Conjecture 4, which
depends only on the Birch-Swinnerton-Dyer Conjecture in the rank zero
case. This latter has been ‘almost proved’ by Kolyvagin [14], [15].

The idea behind our proofs is more or less constructive, so that we can
actually try to compute curves with big Tate-Shafarevich groups. We
present some concrete examples, coming from good examples for the
ABC-Conjecture. In searching for concrete examples one should take
into account not only twists of Frey-Hellegouarch curves, but also all
curves in the isogeny classes of these twists. Notice that a Frey-
Hellegouarch curve has all its 2-torsion rational, and the same is true for
its quadratic twists, but not necessarily for the other curves in its isogeny
class. Conversely, any curve that has all its 2-torsion rational is a
(quadratic twist of a) Frey-Hellegouarch curve.

The best example (in the sense that it has the largest [III|, and also in
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the sense that it has the largest value of [III|/VN) that we found is the
curve

yi+xy +y=x>+x*
—16272564754316406252451x — 798973042220714620227331980906826.

The curve has conductor N = 51636585, and the order of III is (conjectu-
rally) 50176 =2242. So the ratio |III|//VN is large indeed, namely about
6.893. We found a number of other curves with |[II[|> VN. Such curves
were already known from the tables of Cremona, [6]. His best example
(again with largest |III| and largest [III|/VN) is the curve coded 546F,,
with |III| = 49, N = 546, hence |III|/VN =~2.097. Brumer and McGuinness
[3] mention a curve with [ITI| =289, but they do not give the conductor,
only that it is prime and at most 10°, so all we know is that
|IL1|/ VN > 0.0289.

On the theoretical side it has been known for a long time that |III] is
unbounded. Cassels [4] was the first to show this, and see also Bolling [1],
Kramer [16], and Mai and Murty [20]. Cassels, Bolling and Kramer did
not consider the conductors. Cassels and Bolling obtain their results by
looking at quadratic twists by more and more primes. Each time a prime
is added, they win a constant factor in [III|, but the conductor goes up by
the square of the prime. Thus it seems that at best their method gives
elliptic curves with |III| > N<"°¢'°¢¥ for some constant ¢ >0, by the Prime
Number Theorem. Kramer has a somewhat different strategy, and finds
semistable curves with discriminant m(16m + 1) and |ITI| =2%*2, where k
is the number of prime factors of 16m + 1. Again it seems that at best this
yields |III| > N<°&!°eN for some constant ¢ >0. Hence our Conjecture 2
gives a better lower bound than Cassels, Bolling and Kramer, but it relies
on unproved assumptions, whereas the results of Cassels, Bolling and
Kramer are unconditional. Mai and Murty [20] have shown, assuming
only the Birch-Swinnerton-Dyer Conjecture, that there exist infinitely
many elliptic curves with |III|>> N"*"¢ They too consider quadratic
twists, and show that twisting by g causes the mean of g "I, for
g <Q to be »>Q ° and «<QF¢, whereas the conductor is essentially g°. In
particular this means that their conductors are ‘almost square’. In
contrast, the curves we find below are ‘almost semistable’, i.e. the
conductors are ‘almost squarefree’.
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2 Conjectures
For an elliptic curve E defined over Q we adopt the following notations
(for precise definitions see the standard textbooks such as those by
Knapp [12] and Silverman [23], [24]:
ITI = the Tate-Shafarevich group,
N = the conductor,
A = the minimal discriminant,
w = the real period,
Q= w or 2w, according to E(R) being connected or not,
T = the order of the torsion subgroup,
r = the rank,
R = the regulator,
L(s) = the L-series,
¢ = the Tamagawa number, also called fudge factor.
The following conjectures are generally believed to be true but
hopeless to prove.
ConJECTURE 5 (Birch-Swinnerton-Dyer)
cQR |11

= G

linll (s—1)"L(s)=

CONJECTURE 6 (Szpiro) A << N°*°.

Furthermore we will need the following conjecture (cf. Goldfeld and
Szpiro [10].

Coniecture 7 (Riemann-hypothesis). The Riemann-hypothesis for the
Rankin-Selberg zeta-function associated to the weight 3 modular form
associated to E by the Shintani-Shimura lift is true.

For the sake of completeness we mention the ABC-Conjecture. For A,
B, C e N we define

N@A,B,O)= [ »p

primesp | ABC

CoNJECTURE 8 (ABC-Conjecture, Masser-Oesterl€) For coprime A, B,
C e N with A+ B = C one has

C«<N(A, B, O~
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Note that for coprime A, B, C, the conductor N of the Frey-
Hellegouarch curve (2) equals N(A, B, C) times an absolutely bounded
power of 2.

Various relations between the above mentioned conjectures are
known. Assuming the Birch-Swinnerton-Dyer Conjecture, the Szpiro
Conjecture 6 is equivalent to the Goldfeld-Szpiro Conjecture 1 (see [10]).
The Szpiro Conjecture 6 is equivalent to a somewhat weaker form of the
ABC-Conjecture 8 (the ABC-Conjecture 8 itself is equivalent to the
so-called Generalized Szpiro Conjecture max {|A], |g3]} << N°*%), see
Oesterlé [22] and Vojta [28]. At first sight this is true only for the cases
where 16| ABC, but as Noam Elkies explained’, this covers all cases for
the ABC-Conjecture, by considering A*+ (C*—A*)=C* if 16{ABC
(where, without loss of generality, B is assumed to be odd).

We will need the Birch-Swinnerton-Dyer formula (3) only in the case
of rank r =0. In this case major steps towards its proof have been made
by Kolyvagin [14], [15]. However, we need almost the full strength of the
exact formula (3), which still is not shown to be true in the rank zero
case.

The main results of this note can now be stated as follows.

THEOREM 1 Assuming Conjecture 5 (in the rank zero case) and
Conjectures 6 and 1, Conjecture 2 follows.

THEOREM 2 Assuming Conjecture 5 (in the rank zero case), Conjecture
4 follows.

3 Sketch of the proofs

In this section we sketch the proof of Theorem 1, postponing the details
and the proof of Theorem 2 to Section 5. Our starting point is the
Birch-Swinnerton-Dyer formula (3) for a Frey-Hellegouarch curve (2)
associated to an example of A + B = C with, say, C > N. Such examples
exist, as can easily be shown (simply take A=1, B = 3% —1, or be more
intelligent and see Stewart and Tijdeman [26], who prove the existence of
infinitely many examples with

Vlog N(4, B, C) )

C>N(A, B, C)exp ((4 - 6)log log N(A, B, C)

for every 6 >0).

We want to estimate |[III| by estimating all the other quantities
occurring in the Birch-Swinnerton-Dyer formula (3). The order T of the
torsion group is at least 1, and so does not bother us at all. The period Q,

! Private communication.
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which in the case of Frey-Hellegouarch curves always equals 2w, is an
elliptic integral, which can be estimated by

1
1) <<7C—log C.

Hence Q<« N7"?*¢ Even if A+ B =C is not a ‘good’ example, we still
have C > (ABC)s= N(A, B, C)5, hence Q «< N~"°*¢. In a sense it is these
small periods, occurring for all Frey-Hellegouarch curves, that make their
Tate-Shafarevich groups big.

Upper bounds for the regulator and lower bounds for the value at s =1
of the rth derivative of the L-series are not known (but see [18] for
conjectures, which seem to be of no use to us). However, both problems
can be solved at once by changing from the Frey-Hellegouarch curve (2)
itself to an appropriate quadratic twist. By the curve twisted by a
(squarefree) g e N we mean the elliptic curve

gy’ =x(x — A)(x + B). (4)

We denote the L-series of this twist by L,(s). Following Kohnen and
Zagier [13] (see [8] and [10]) it can be shown that

> L,(1)>» N, (5)

q<N?

and if one assumes Conjecture 7, then this can be improved to

> L,(1)>N=

g=<N*
Here the sums are taken over the g’s for which the quadratic Dirichlet
character has a prescribed value at —1, depending only on A, B, C.
Anyway, there is a quadratic twist by a small g for which

L,(1)>1. (6)

It follows that L,(1) #0, so that according to the Birch-Swinnerton-Dyer
Conjecture 5 the rank r of the twisted curve must be zero. Now we can
kill two birds with one stone, since in the first place we have with (6) a
lower bound for the left hand side in the Birch-Swinnerton-Dyer formula
(3), and in the second place the regulator is trivial, namely R = 1. (In fact,
we almost killed a third bird, by Kolyvagin’s work [14], [15].) The
twisting will change the period w by a factor of about Vg (but only to our
advantage), and the conductor N by a factor at most ¢g° (to our
disadvantage). This is the price that we pay for killing the birds. But if we
also pay the price of assuming Conjecture 7, the conductor changes at
worst by a factor of order N°.
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It remains to estimate the Tamagawa number c. We cannot use trivial
estimates here, because we have to deal with the possibility that the
reduction at all the bad primes is split multiplicative, causing for each bad
prime p a (possibly large) contribution of ord,(A) to the Tamagawa
number. It seems to be folklore that ¢ cannot be too large for arbitrary
elliptic curves, but no proof was found in the literature. Moreover, when
asked, experts seemed to guess a much better bound (e.g. ¢ <«<log A) than
we can prove. Therefore we spend the next section in analytic number
theory to show that ¢ < A*'°¢!°84 for some absolute constant k > 0. This
is worse than any fixed large power of log A, but better than any fixed
small positive power of A. With the Szpiro Conjecture 6 this thus implies
¢ « N°¢, which is enough for our purposes.

Now, on putting all our estimates together with the Birch-Swinnerton-
Dyer formula (3), Theorem 1 follows.

4 Bounding the Tamagawa number

For a positive integer n we define c(n) to be the product of the exponents
in the prime decomposition of n. We need a bound for c¢(n), but could
not find one in the literature.

LemMma 1 For any n € N we have
C(ﬂ) « Nlﬂ_%l(1+£)/loglog n
P. Erdos, who in a letter to the present author dated September 3, 1996
log 3
conjectured this result, noted that the constant —§~ cannot be improved,

as the cubes of the products of the first » primes show. The proof below
mimics a similar proof for the function d(n) (the number of divisors of
n), as given in Theorems 315-317 of [11]. This line of proof was pointed
out to the author by Jean-Marc Deshouillers.

log 3
Proof. Let €¢>0 be given. Put 8=%(1+%8)/10g lognn. For the

primes p > 3" dividing n we use that for n € N we have

For the primes p < 3'®® dividing n, of which there are at most 3"/G% we
use

=< (50g2)
p P dlog2/”
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If the prime decomposition of n is given by n = f[ pi, then we have
i=1

E(LS)= fI r;,n, and thus
n i=1p,‘ !
1
1 -6l < 3168 ——
ogc(n) ogn 5 log 2

_ 3(log n)""*#) log log n - log 3 (1 8) logn
(log 2)(log 3)(1 + 3¢) 3 loglogn

2
for n large enough, and the result follows.
Now we are in a position to prove a bound for the Tamagawa number.

THEOREM 3 For the Tamagawa number c of any elliptic curve defined

over Q) we have
c <Ax/(log log A)

for some absolute constant k.

Proof. We have ¢ =1[Ic,, where the product runs through the bad
P

primes, i.e. the primes p that divide A, and ¢, is given in Tate’s algorithm
(see [27] or [24]). From this algorithm it becomes clear that
¢, <max {4, ord,(A)}

(see also [23], Corollary C.15.2.1). Let A= A;A,, where A, contains the
factors from the prime decomposition of A with exponents at most 4. Let
s be the number of those factors. Then it follows that

c<4&c(A,).

If2=p,<p,<---<p,are the first s primes, then certainly

logA,; = > logp; = > log (i +1)
i=1 i=1 .
> j logxdx=(s+1)log(s+1)—s>kslogs
1

for some constant x, > 0. It follows that for some constant k, >0 we have

< log A,
S<KyT———
’loglog A,

so that for a constant k5 >0

45 < AK;/lOg log Ay < AK]/]Og log A
1 .
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Here in the last step we used e <A; <A. But if A; <e® then s <2, and
the required inequality is trivial. Lemma 1 implies the existence of a
constant «, >0 such that

C(Az) < A;dk)g log A, < Ax4/log log A’

where again we used that e <A, <A. But if A, <e® then c(A;) <3, and
the required inequality is again trivial. The result now follows with
K = K3+ Ky4.

An immediate consequence of Theorem 3 is the following.

CoRroLLARY. If the Szpiro Conjecture 6 is true, then the Tamagawa
number of any elliptic curve defined over Q satisfies

¢ < N¢

Proof. From Theorem 3 and the Szpiro Conjecture 6 we clearly even

have
C << N(6K+e)/(log log N)

5 Details of the proof of Theorems 1 and 2

In the proof below, treating Theorems 1 and 2 at the same time, the small
positive number ¢ will change its precise meaning almost every other line
and sometimes within one line, but this should not cause difficulties. We
use notations as given in Section 2. Always N will be assumed to
approach «.

Proof. Let A,B,C be coprime positive integers such that A+ B=C
and C > N(A, B, C). Such triples exist with arbitrarily large N(A, B, C),
by the results of [26]. Let E be the Frey-Hellegouarch curve (2). Then N
is squarefree apart from a possible power of 2, which is at most 2°. Thus
certainly C >> N, because N(A, B, C) is the squarefree part of N.

For the quadratic twist E, of E by g, defined by (4), we denote all the
parameters by the subscript q. By Conjecture 7 (see [13] and [10]) there
exists a ¢ < N*, that we may take squarefree, such that E, has rank 7, =0
and L,(1)>1. Hence R,=1, and also of course 7,=1. By the
Birch-Swinnerton-Dyer formula (3), the Szpiro Conjecture 6 and the
Corollary to Theorem 3 we thus have

ToL(1)

I, | ==

>N, Q" (7
q==q
Notice that the transformation of variables (x, y):=(gx, g°y) in equa-

tion (4) shows that E, can also be described by the equation
y?=x(x —qA)(x +4B), (8)
thus equation (2) with A,B multiplied by g. It now follows that apart
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from the power of 2, the conductor N, of the twisted curve is Iem (N, ¢2),
and the difference in the power of 2 is at most 2%, Hence

N, <2°Ng*> < N'*<, )
It remains to estimate Q, =2w,. We have for the Frey-Hellegouarch
curve (2) o = w,, with
( dx
=] 3
4, Vx(x—A)(x +B)

By equation (8) we now have
0

_ J’ dx _u
PaTU ) NVx(x—qA)x +qB) Vg “rSHer

where u e N is the scaling factor that is introduced in turning the model
(8) into a minimal one. We first estimate w,, and then w.
If A> B then we put @ = B/A, and we have
1 f de _nV2
w;=——

VA D VEE+a)g-1) Ve
where we used the substitution x = A¢, that A > 1C, and that
[ v
J Ve(E+a)E-1)

< N7

2,622 < T

for any «a € (0, 1).
If A< B then we put @ = A/B, and we similarly have

WU — B

“1TVB) Ve ayi- 5 Ve

log C «< N™12*e,

because

dé
| VeE+a)1-8)

1
=log—+ 0O(1) as a0,
a

1 B
and —=—<B<C(C.
a A
So we obtain
w; < N7i+e, (10)

To estimate the scaling factor u we study the algorithm for finding a
minimal model of a curve, due to Tate. We use the version by Laska [19],
as given by Cremona [5]. We denote the “c,” and “A” of the models (4),
(8) of the curves E, E, by respectively cg,;, ¢s, and A;, A,. Then

€61 =32(A—B)(A+2B)(2A+B)  c¢6,=q"Ce1,
A, = 16A%B%(A + B), A, =q°A,.
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The odd primes p such that pfcs, or pfA, do not contribute to the
scaling factor u. If p is an odd prime such that p | ¢¢, and p | A,, then the
fact that A, B are coprime implies that p | g. But g is squarefree, so that
ord,(gq) =1, and thus

ord,(cs,) =3 + ord,(cs,1), ord,(A,) =6+ ord,(A;).

But, as noted above, if p | A;, then the coprimeness of A, B implies that
pfce . It follows that

ord,(ged)ci ,, A,)) <6,

and by Laska’s algorithm this means that p does not contribute to the
scaling factor u. Finally we have to treat p =2. Reasoning as above we
see that if 4| AB(A + B) then ord,(ce,) = 6, and by 4/ g this means that

ord,(ged(cz ,, A,)) <6 + ord,(ged(cs 1, Ay)) <18,

so that the contribution of the prime 2 to u is at most 2.
Our conclusion is that ¥ <2, and thus by (10) and (9) that

Q, =20, <4w, < N1 <N ¥

With (7) this proves Theorem 1.

To prove Theorem 2, notice that if we allow g to be as large as N?,
then (5) guarantees that L,(1)>1, without assuming Conjecture 7.
Similarly as above, using Theorem 3 (but not its corollary, so we also
avoid Conjecture 6), we obtain

et e VC .
|IHq| > Aq ‘Qq1>> Aq @

By N «< A we have A, < q°A «< N'?A «< A", and thus by A <(ABC)*<(C°
we find

I, | > A€,

as required. O

6 Examples

There are lists available of good examples of coprime A, B, C € N such
1

_ €.,

log N(A, B, C)

say. The first such list was published by the present author [29], more

recent ones in [2] and [21]. In July 1995 Browkin and Brzezifiski

distributed by e-mail an updated list with all known 115 examples of
log C

log N(A, B, C)

that A + B = C. Here, an example is called good if

>1.4.
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Using software such as Cohen’s Pari, Connell’s Apecs and Cremona’s
Mwrank, we can try to compute (analytically) the value for the order of
III for the curves in the isogeny classes of twists of the Frey-Hellegouarch
curves (2) corresponding to these examples. We did so for a number of
examples, with results as in the Table at the end of this paper. We found
11 curves with |IIT| > VN, which we list below. Here a,, a,, as, ds, dg are
the coefficients of a global minimal model y* + a;xy + asy = x> + a,x* +
a,x + ag. (See Table opposite).

Note that Cremona [6] also found several curves with [II[|> VN, the
best one being y? + xy = x> — 3674496x — 2711401518, coded 546F,, with
[III| = 49, N = 546, hence |III|/VN =~ 2.097.

Further note that none of the curves in the table above are themselves
Frey-Hellegouarch curves (2) or twists of Frey-Hellegouarch curves (4),
although they are isogenous to such curves. The best example of a
(twisted) Frey-Hellegouarch curve that we found comes from the best
example of A + B = C, due to E. Reyssat, which is

A =3"-109, B =2, C =23,

log C

——————=1.629911. Th -
log N(A, B, C) e corres

with N(A, B, C) = 15042, so that
ponding Frey-Hellegouarch curve
y?=x(x — 6436341)(x +2) = x> — 6436339x> — 12872682x

has rank zero, N = 240672, and |III| = 361, so [III|/\/N ~().7358.

In a Table at the end of this paper we present the results for some
other isogeny classes of twists of Frey-Hellegouarch curves for good
examples of A + B =C. The number refers to the list of Browkin and
Brzeniriski dated July 15, 1995, that was distributed via e-mail. We
always take A < B, as the corresponding Frey-Hellegouarch curve with A
and B interchanged is its twist by —1. Notice that all other permutations
and sign changes of A, B, C lead to curves isomorphic to one of these
two. For many examples of A + B = C we considered for a few twisted
Frey-Hellegouarch curves (4) the complete isogeny classes. The criteria
for an isogeny class of curves to make the Table were:

* A, B, C appears in the list of Browkin and Brzeninski,

gl <3,

N <108,

the rank is zero,

there is a curve in the class with |III| > max {1, VN/100},

the computations could be done in a few minutes on a personal
computer.

L] L] L] L[] L[]
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A+ B

0ST008¥C0T—

14 €9T¥78CT'0  09981S0°T  +0OI'T 91 012 0080261 — 0 0 1
05862791 —

4 €9T¥T8CI0  09981S0°C  +OI'T 91 012 00€61T— 0 0 1
YS66S0L898T1SSSTOSYLLETLYS —

8 I8LL680T0000  98SL8ITT  TTI'T  916T  9EI8SLY  1€6816VTITR6E6ETLT— 0 0 0
OY8SETEITYBYSTIT8ISSO66V0LSYL—

vz 9v619LT900000  1T90TI6TC  €9T'T  $809  TLSSELT  ¥h601990Z6L6F60TSYEE— 0 1I- 0
¥99S0TLSS6ETSEPO09EILLT —

91 60ZVIL6LO000  9LESGGF'T  9SE'T  P8L  OLIVEE  00000SOLYE99STI— 0 I- 1
T898SE6EETYSTHOSOTYSYLIESOERYTT —

8 660V€L9T0000°0  LOSOLOLO'0  9PL'T  #¥STI  S8S9E9TS  1TOYIYO9SLTSOTESEOLIOT — I 1 1
LO9TTLRESI6ST6186T6060LTTETSTT —

91 T8SLYELSO000'0  SEO8THTY  SITT  96V81  STIYELE9 LEGEYSITOEETLSLIEOSY— 0 1I- 0
SL6BELOEOILYSTSESTHO8SYOTO0T—

8 9IS69Y11000°0  SEOSTHTY  STTT  96V81  8TIYELE9  LLSY86STLIYSISOTO0E— 0 1- 0
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One effect of these criteria is that the asymptotics cannot be properly
illustrated, as for physical reasons we cannot do computations for very
large conductor. Another effect is that we seem to have biased for small
Tamagawa numbers. We found a number of curves with a large
Tamagawa number, causing a small |III|, that thus did not make the
Table. Indeed, we feel that for rank zero curves with small conductor, say
N <10 or so, the Tamagawa number might be the main factor
determining |III|. Finally, we omitted the isogeny classes we found with
all curves having |III|=1 and N <10% although they do have |III|>
VN/1000. Notice that all the curves in Cremona’s tables [5] satisfy
111 > VN/100.

For each curve we tried to compute the conductor N, the rank r, the
order of the Tate-Shafarevich group III, the period Q=2w, the value
L(1), the order T of the torsion group, and the Tamagawa number c. We
give these numbers for the twisted Frey-Hellegouarch curve (4), and for
the curve in the isogeny class with maximal |III|. If there are more curves
in the isogeny class having maximal |III| then we give data for the curve
with minimal Tamagawa number. In no case do we claim to have proved
that the entries for |III| in our Table are correct, only that they are
probably true under the Birch-Swinnerton-Dyer Conjecture (but notice
that our numerical results do not depend on other conjectures than the
Birch-Swinnerton-Dyer Conjecture in the rank zero case). All our results
are numerical in the sense that they have been obtained by analytic
techniques using approximations of L-series.

Note that isogenous curves do have the same L-series, but may have
different torsion groups, periods, Tamagawa numbers and III’s. This
phenomenon had been noted before, and is not rare at all (see e.g.
Cremona [6]), as it seems to be in the more or less comparable situation
of non-isomorphic number fields with the same zeta-functions but with
different class groups, of which the first examples were found only
recently, cf. [25].

Finally we note that, although usually in an isogeny class there is only
one curve of the form (2), there are a few cases in which there are two
isogenous Frey-Hellegouarch curves of this form, thus linking two
examples of A + B = C that at first sight seem to be unrelated. A curve
defined by an equation of type (2) has all its 2-torsion rational, and
conversely, any curve with only rational 2-torsion is defined by an
equation (2) (with A, B not necessarily coprime), hence is a (twisted)
Frey-Hellegouarch curve of some example of A + B = C. Kubert [17] has
parametrized occurrences of isogenous pairs with rational 2-torsion.
Studying these parametrizations revealed the following results for isogenies
of degree 2 and 3. We give the results in terms of examples for A + B = C.
A pair A+ B =C, A’ + B' = C' with isogenous Frey-Hellegouarch curves
can be called an isogenous pair of examples of A + B = C.
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Isogenies of degree 2 correspond to
A=x),  B=(y-x)(y+x), C=y’

with coprime x,y € N. Then the isogenous example is

O et A 5/ ,_<y_+_X>2
a-( ) w07
with d =2 if both x and y are odd, and d =1 otherwise. In the list of
Browkin and Brzezinski this happens at the numbers 20, 26, 46, 76, 86
and 87 (maybe with A and B interchanged). The numbers 86 and 87 are
isogenous, and the A’'+B’'=C’ for the other examples have
log C’
logN(A’, B', C'")
special example, because here also B’ happens to be square. So
interchanging A’ and B’ yields a third isogenous example.
Isogenies of degree 3 correspond to

x— 2y>3 <2x - y>3 (x + y>3
A= e = —_— = — -_Z
(=2), (7). cma-n(Y).
with coprime x, y e N, and d =3 if 3|x +y, and d =1 otherwise. Then
the isogenous example is

< 1.4, so do not appear in their list. The number 26 is a

x—2y 2x—y x+y
A/ — 3 : Br — 3 ) C' — _ 3 .
X Y @=y)r—
In the list of Browkin and Brzezifiski this happens at number 31. The

log C’
logN(A', B', C")

isogenous example A’ + B’ = C’ has < 1.4, so does not

appear in their list.

In the following table we present the isogenous paris of examples for

A+ B=C that we found. Notice that by definition N(A, B, C)=
log C log C'

N(A’, B’, C"), and that if ———————islarge, th s —————.
( ), and thati log N(A, B, C) is large enSOISlogN(A, B.O)

no.

log C , , , log C’

A B ¢ igNaBo A B " iognNa, B, Cy Y8
77 2091053 3.5t 1.4741 s3t 2.str o 2%ar? 1.3560 2
1 2°.3.5 7* 1.4557 2°.3° 7 5 1.2039 2
7 2.3 5t 1.2039 3* 5%.7 2% 1.0370 2
3.7 2%.23% .59 50.19° 1.4509 3.7 27.23.59° 5°.19° 1.3140 3
1 2*.367-547 5°-7° 1.4391 3" 5*.7 2°.547% 1.3201 2
7 2'7.1817  3%.809° 1.4189 181 3*-7-809 2% 1.3302 2
3% 2%.5.137. 13° 1.4137 5° 3713 2%.1377 1.4133 2
5% 37.13° %137 1.4133 34 2%.5.137 13° 1.4137 2
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