On the practical solution of the
Thue-Mahler equation *

N. Tzanakis and B.M.M. de Weger

1 Introduction

We are interested in the following problem: Given any Thue-Mahler equation, to
find explicitly all its solutions. Although there is an effective way to solve any
Thue-Mahler equation (see, for example, Chapter 7 of [5]), in practice one faces
a variety of computational problems. To the best of our knowledge, only one or
two Thue-Mahler equations have been solved so far (see [1] and [7]) and in these,
only one prime power and one fundamental unit (thus, two unknown exponents)
are involved.

We have developed a general method, which we now want to illustrate by
solving a specific equation. In this example four unknown exponents are involved.

A famous Thue equation is Ljunggren’s z% — 3zy® — y* = 1 (see [2]; Chapter
23 of Mordell’s book [4] and [6]). We decided to solve

2 — 3zy® — ¢ = £3"LTM19™2, (1)

which “includes” Ljunggren’s equation. The primes 3, 17, 19 have not been arbi-
trarily chosen; in fact, these are the only primes p < 20 for which 23z’ - =
0 (mod p) is solvable.

2 Solution of (1)

We worked in Q(0), where 8° — 3¢ — 1 = 0. This is a Galois field. This fact is not
essential in our method, but surely simplified our computations and clarified our
exposition.

To every solution {x,y), a class of six solutions is associated:

{:i:(ﬁt‘, y): :t(y: —T= ’y)! :‘L—"(W:L‘ = Y .'L')}

*Lecture given by N.Tzanakis
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Using this observation, it was easy to show that, in order to solve (1), it suffices

to solve
B =1z —yf = 2 oqT1pr2gt1poz (2)

Here
¥ = —1+ 8 is the prime divisor of 3,

m =3 —#is a prime divisor of 17,
pE{3+8,5—-6%1-9+ 62}, the set of prime divisors of 19,
f,1=1-+0 is a pair of fundamental units,
ng € {0,1} (an obvious fact),
n1,ng are unknown nonnegative integers,
a1, 0y are unknown integers.

Of course, solving (2) means to find all (np,ny, no, ay,as) for which the coefficient
of 6% is zero when the right-hand side of (2) is expressed in terms of the basis
1,8, 6%

Using (2) and its other two conjugate relations we eliminated z,y and got the
relation

(_ml)azgnlxngga; na; — 1= (ml)al +I.'12+HQE*TL[ X*”Z 92a1+62—17]_a1 +as-—fg , (3)

where £, x, £*, x™ are explicitly known elements of Q(8) and o} = a1 +2a3 —ng—1,
a5 = —2a; — ap + 1.

In the right-hand side of (3) all elements apart from £* have m-adic order zero,
while ord,{£*} = 1. Then (3) implies that

ord, ((—1)a25n1xn2 Baina'z — 1) =73, (4)

Put N = max{ni,no}, A = max{|al|,|a}|}, H = max{N, A}. Since ¢, x,8,n are
explicitly known, we could apply the p-adic theory of linear forms in logarithms
of algebraic numbers to the left-hand side of (4), in order to find an upper bound
of n; in terms of H. This was accomplished thanks to a recent theorem of Kunrui
Yu ([12]). Analogously, working p-adically, we found an upper bound of ns. Thus
we have an upper bound of N, which, by Yu's theorem, is of the form

N < C’]g(logH + 014)- (5)

In our case we computed C13 = 6.190047 - 10%* and Cy4 = 4.28.
Our next task was to find an upper bound of A similar to that of N. Using
elementary arguments we did so, under the assumption that
: (%) —ChgA
i 18] > e ; (6)
for a suitable Chg. Then A is at most const. + const. log H, which in combination
with (5) gives
H < Ciys+ Cxy IOgH.
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In our case we derived in this way
H < 4.38.10%, (7)

under the restriction (6), where Cig = 0.085.

The case opposite to (6) remained. Here the philosophy is to work as in the case
of a Thue equation, where also one of the conjugates of # = x — ¥4 is necessarily
“very small” (see e.g. [8]). We proved by elementary arguments

0 < |Ag| < const.e~C1eH 8
where
Ag = 11 log [£10)] + ng log | x| + & log |89 | + o) log ||

(4o € {1,2,3}, so we had to consider three cases), and the constant in (8) is expli-
citly calculable. On the other hand, we applied the (real-complex) theory of linear
forms in logarithms of algebraic numbers (in our case we applied Waldschmidt's
theorem [10]} to conclude that

|Ag| > e—G'T(logH+C’s)’
where Cy = 2.6467 - 10%® and Cy = 2.442325. This relation, combined with (8),
leads to a relation of the form

H < const. + const. log H,

from which we have found
H < Ky = 5.76 - 10%2. (9)

Compare this with (7) to see that in all cases (9) is true. In view of (9), the
solution of (2) and, hence, of (1}, is effective (by enumeration), but elearly such a
task is thoroughly unrealistic.

3 Reductionof H

‘We found a reduced upper bound of n; as follows: By some elementary arguments
{4) can be written as
Ty = 01'(117(A1),

where A is a linear form in 17-adic logarithms:
Al =n1A1 oA + a’l,ul + (1"2,(1,2.

Here, A1, Ao, p1, g0 are explicitly known 17-adic logarithms of algebraic numbers.

Next, put
A 1 Ho

By = 5 ap = N g = W (17-adic integers).
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For a positive integer m, to be specified later, we computed rational approxi-
mations 8™, &™) a{™ of 81, a1, as respectively, and considered the lattice | .
with basis vectors the columns of the matrix

10 0 0

o 1 0 o

0o 0 1 0
o™ ol g qgm

This lattice is just the set of vectors (ny,n9, af,ab)t € Z* for which ordyy(Ay) >
1771 (this shows the meaning of m).

By the L3-algorithm ( [3], see also [11] for various applications of this algorithm
to diophantine problems) we computed a reduced basis by,...,by of T,. We
proved that

if |by] > 252Ky then ny < m.

In practice, the condition |by| > 252K, was satisfied, when we took m “somewhat
larger” than 4log Ko/log17. To give an idea, in our example 4log Ko/ log 17 ~
106.5 and it turned out that m = 110 was sufficient; hence n; < 110. Working
analogously with ng we came to the conclusion that ny < 111. This completes the
p-adic reduction step.

Then we proceeded with the real reduction siep: From (9) we have A < Kj,
while from the p-adic reduction step we know that N < 111. We chose an integer
C' of the size of K3 - 1112 (in our case C = 10" was good) and we put

1= [Clog €W}, By = [Clog|x™)]],
a1 = [Clog |8%)]], an = [Clog Int)]].

Then we considered the lattice I' with basis vectors the columns of the matrix

[Ko/111] 0 0 0
0 [Ko/111] 0 0
0 0 1 0 |’
I Ba Q1 g
and we calculated a reduced basis by, ..., by of I' by the L3-algorithm. We have

proved (using a.o. the fact that & < 111) that

if [byf > 2%/2\/4(Ko + 111)2 4 3KZ then
H < some constant of the size of log Kj.

In our case this constant turned out to be equal to 1168.
Thus, the p-adic reduction step applied twice (with p = 17 and p = 19),
combined with the real reduction step, has given the new upper bound

H < K} = 1169,
which is a big progress compared to (9). It is still large, however, therefore we

have repeated the same process, with K7 in place of Kjp, and found a new upper

bound
H< K =296, N<I14.
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Then, ng € {0,1}, max{]ai|, |az|} < 297, max{n,na} < 14, and we had to decide
which tuples (ng,n1,n2,a1,a2) satisfy (2). It is not realistic to check all tuples
in the above ranges separately. Working modulo conveniently chosen primes, we
were able to exclude most of them, and the few that remained we checked by
straightforward computations. The final list of solutions of (1) is given in the
table below.

Final remarks: 1. A detailed exposition of the content of this talk can be found
in our paper [9.

2. All the computations needed in this paper have been performed on an AT
personal computer. Most of the computer output is included in an appendix of [9].

Table 1. Solutions of (1}

no M Ma =(z,y)

0 0 0 (Lo 0 -1 )

0 0 0| (21 (1,-3) (3,-2)

0o 0 1| 1,2 (2, -3) (3,-1)

0 0 2| (45) (5,—9) (9, —4)

0o 1 0| (31) (1,—4) (4,-3)

0 1 0| (32 (2,—5) (5,—3)

0 1 0| (158 (8,—23) (23, —15)
0o 1 1] (1,6) 6, —7) (7,-1)

0 1 1] (3,5 (5, —8) (8,-3)

0 1 1] (2815  (15,—43) (43, —28)
0 2 1| (59,31)  (31,-90) (90, —59)
0 2 1| (31,15) (15, —46) (46, —31)
0 2 1| (18,13) (13, —31) (31, —18)
0 2 2 (206,100) (109,-315) (315, —206)
0 2 51 (896,37) (37,—933) (933, —896)
0 3 11 (97,54)  (54,—151)  (151,-97)
10 0] (1,1 (1,-2) (2, —1)
1 0 1] (7,4 (4,—11) (11,-7)
1 0 1| (13,7 (7,-20) (20, —13)
1 0 1] (52 (2, -7 (7,-5)
11 o (41 (1, -5) (5,—4)

1 1 1] {10,1) (1,-11) (11, —10)
11 2 (29,20) (20, —49) (49, —29)
1 1 3| (73,13) (13, —86) (86, —73)
1 2 0| @70 (7,—11) (11, —4)
1 2 2 |(712,379) (379,—1091) (1091, -712)
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