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CHAPTER 1. INTRODUCTION.

1.1. Algorithms for diophantine equations.

This thesis deals with certain types of diophantine equations. An equation is
a mathematical formula, expressing equality of two expressions that involve
one or more unknowns (variables). Solving an equation means finding all
solutions, i.e. the values that can be substituted for the unknowns such that
the equation becomes a true statement. An equation is called a diophantine
equation if the solutions are restricted to be integers in some sense,
usually the ordinary rational integers (elements of Z ) or some subset of

that.

Examples of diophantine equations that will be studied in this thesis are

x2 +7=2"
(the Ramanujan-Nagell equation, having only the solutions given by

(*x,n) = (1,3), (3,4), (5,5, (11,7), (181,15) , see Chapter 4);
VSR At

(a purely exponential equation, having only the solutions (x,y,z) = (1,0,0),

(2,1,0), (3,1,1), (5,3,1), (7,1,3) , see Chapter 6);

y2 = x3 - 4-x + 1
(an elliptic equation, having only 22 solutions, of which the largest are
(x,y) = (1274,345473) , see Chapter 8). The three examples mentioned here are
only examples of classes of equations which we study. We also study (in
Chapter 5) a diophantine inequality (a formula expressing that one expression
is larger than another, where solutions are again restricted to integers). In
the following discussion the statements about diophantine equations also hold

for this inequality.

What the equations treated in this book have in common is that they can all

be solved by the same method. This method consists essentially of three



parts: a transformation step, a application of the Gelfond-Baker theory, and

a diophantine approximation step. We explain these steps briefly.

First, one transforms the equation to a purely exponential equation or
inequality, i.e. a diophantine equation or inequality where the unknowns are
all in the exponents, such as in the second example given above. Each type
of diophantine equation needs a particular kind of transformation, so that it
is difficult to be more specific at this point. In some instances, such as in
the second example above, this transformation is easy, if not trivial. In
other instances, as in the first example above, it uses some arguments from

algebraic number theory, or, as in the third example above, a lot of them.

In general, such a purely exponential equation has the form

s, s
t an
Yc = [l ey, (1.1
i1 J 1J 0 s 0j

and a corresponding purely exponential inequality looks like

t %in
.Z ci-'ﬂ a, < minfe ﬂ ulJ (1.2)
i=1 j=1 i J =1
where t, Siv Cyo aij' § are constants with ¢t, s; elN, 0<§ <1, and
s aij belong to some algebraic extension of @ , and where the nij are

the unknowns in Z . We now suppose that the number of terms ¢t on the left
hand side is equal to 2. This restriction is essential for the second step,
in which we wuse results from the so-called theory of linear forms in
logarithms, also known as the Gelfond-Baker theory. (Some special exponential
equations with more terms can also be treated by the Gelfond-Baker method, by
reducing them to exponential inequalities with two terms, cf. Stroeker and

Tijdeman [1982], Alex [1985a], [1985b], Tijdeman and Wang [1987].)

An exponential equation or inequality such as (1.1) or (1.2) gives rise to a
linear form in logarithms

m
A= log B, + ) n, -log B, ,
0 . i i
i=1
where the ﬁi are algebraic constants, and the n, are integral unknowns.
Here, the logarithms can be real or complex, or can be p-adic. This relation
between equation and linear form in logarithms is such that for a large

solution of the equation the linear form is extremely close to zero (in the



real or complex sense, or in the p-adic sense). The Gelfond-Baker theory
provides effectively computable lower bounds for the absolute wvalues
(respectively p-adic values) of such linear forms in logarithms of algebraic
numbers. In many cases these bounds have been explicitly computed. Comparing
the so-found upper and lower bounds it is possible to obtain explicit upper
bounds for the solutions of the exponential diophantine equation or
inequality, leading to upper bounds for the solutions of the original
equation. This second step, unlike the first (transformation) step, is of a

rather general nature.

We remark that many authors have given effectively computable upper bounds
for the solutions of a wide variety of diophantine equations, by applying the
method sketched above. For a survey, see Shorey and Tijdeman {1986]. Often
these authors were satisfied with the knowledge of the existence of such
bounds, and they did not actually compute them. If they computed bounds, they
did not always determine all the solutions. In this thesis, solving an

equation will always mean: explicitly finding all the solutions.

After the second step, the problem of solving the diophantine equation is
reduced to a finite problem, which is the treated in the third part of the
method. Namely, since we have found explicit upper bounds for the absolute
values of the (integral) unknowns, we have to check only finitely many
possibilities for the unknowns. However, the word finite does not mean the
same as small or trivial. In fact, the constants appearing in the bounds that
the Gelfond-Baker theory provides for linear forms in logarithms are rather
large. Therefore, in practice the upper bounds that can be obtained in this
way for the solutions of purely exponential equations can be for instance as
large as 1040. This is far too large to admit simple enumeration of all the

possibilities, even with the fastest of computers today.

Notwithstanding, it is generally assumed that the upper bounds found in this
way are far from the actual largest solution. Therefore, it is worthwile to
search for methods to reduce these upper bounds to a size that can be more
easily handled. Often it is possible to devise such a method using directly
certain properties of the original diophantine equation, for example that
large solutions must satisfy certain congruences modulo large numbers, or
some reciprocity condition (for some examples, see Grinstead [1978], Brown
[1985], Pinch [1987], and Pethoé [1983]). The disadvantage of such methods is

that they work only for that particular type of diophantine equation, so that



in general for each type of equation a new reduction method must be devised.
It would therefore be interesting to have methods for reducing upper bounds
for the solutions of inequalities for linear forms in logarithms. They would
be useful for solving any type of diophantine problem that leads to such

inequalities.

Such methods are provided by that part of the theory of diophantine
approximation that is concerned with studying how close to zero a linear form
can be for given values of the variables. Recently important progress has
been made in this field, leading to practically efficient algorithms, which
can be employed for many diophantine equations to show that in a certain
interval [XI'XO] no solutions exist. Usually X is of the order of

1

magnitude of log XO . When for XO the theoretical upper bound for the
solutions is substituted, a new upper bound X1 is found. For many equations

the upper bound X is well within reach of practical application of these

0
algorithms, within only a few minutes of computer time. This thus leads in
practice to methods for finding all the solutions of many types of
diophantine equations, for which alternative methods have not yet been found

or employed with success.

It is mainly in this third part of the method that new developments can be
reported. The arguments we use in the first and second parts are mainly
classical. They are applied to types of equations that have been studied

before, and also to new types of equations.

The method outlined above, and used in this thesis to solve many examples of
various diophantine equations, is of an "algorithmic" nature. In a sense it
lies between "ad hoc" methods and “"theoretical" methods. This we shall
explain below. Let a set of diophantine equations with an unspecified
parameter in it be given. As an example of such a set, consider the
generalized Ramanujan-Nagell equation x2 + D = 2" | where D is a

parameter, and X, n are the unknowns.

An ad hoc method is a method for solving the equation for specific values of
the parameters only. However, it may not work at all for other than these
particular values. The first example of solving an equation of the type
x2 +D = 2" occurring in the literature is that by Nagell {1948] of D =7

The method he used is of an ad hoc nature, since it depends heavily on the

special choice of 7 for the parameter D

10



A theoretical method is capable of proving results that hold for some large
set of values of the parameters. The Gelfond-Baker theory is of a theoretical
nature, since it yields upper bounds for the solutions of many equations in
terms of their parameters. Other examples are the theory of quadratic

reciprocity, that shows that x2 + D - 2" has no solutions at all if D is

odd, at least 5, and not congruent to 7 (mod 8) , and the theory of
hypergeometric functions, which Beukers ([1981] wused to show that the
solutions (x,n) of x2 + D = 2" satisfy n < 435 + 10-210g|D| , and if
|ID] < 296 then moreover n < 18 + 2~210g[D[ . Theoretical methods are often

too general to be able to produce all the solutions of a given equation.

An algorithmic method is a method that is guaranteed to work for any set of
values of the parameters, but has to be applied separately to each particular
set of parameter values, in order to produce all the solutions. The methods
used in this thesis are mainly of such an algorithmic nature. For the
equation x2 + D = 2" (and actually for a more general equation) we will
give an algorithmic method in Chapter 4. In fact, since Beukers'’ above-
mentioned result provides a small upper bound for the solutions, it can be
made algorithmic by providing a simple method of enumerating all the
solutions below the upper bound. In order to make the Gelfond-Baker theory
algorithmic, enumeration of all possibilities is impractical. Therefore more
ingenious ways of determining all the solutions below a large upper bound
have to be found. We remark that Beukers’ method for the more general
equation x2 + D = pn also has an ad hoc aspect, since it does not work for

any value of p . Our method of Chapter 4 does not have this disadvantage.

An ideal towards which one might strive in solving diophantine equations is
to devise a computer algorithm, which only has to be fed with the parameters
of the equation, and after a short time gives a list of all the solutions as
output. The user should have a guarantee (in the strictest, mathematical

sense of proof), that no solutions have been missed.

At first sight the method outlined above, and described in this dissertation,
seems to be a good candidate to be developed into such a general applicable
algorithm. Namely, the second step is of a quite general nature, providing
upper bounds for exponential diophantine equations that are explicit in the

parameters of the equation. Also the third step, the algorithmic diophantine
approximation part, works in principle for any set of values substituted for

the parameters. However, the computations have to be performed separately for

11



each particular set of values.

The main difficulties in devising such a ‘diophantine machine’ are in the
first part of the method outlined above, especially if some algebraic number
theory 1is used. Developments taking place in the theory of algorithmic
algebraic number theory on computing fundamental wunits and on finding
factorizations of prime numbers in algebraic extensions, are of importance
here. We believe that when suitable algorithms of this kind are available, it
will be possible in principle to make such a ‘diophantine machine’. The
generality of such an algorithm is restricted by the generality of the first
step, the transformation to the linear form in logarithms. In this thesis we
use computer algorithms only if the magnitude of the computational tasks
makes this necessary, and keep to "manual” work otherwise. In this way we

also try to keep the presentation of the methods lucid.

The reader should be aware of the fact that the computer programs and their
results are part of the proofs of many of our theorems on specific
diophantine equations. It is however impossible to publish all details of
these programs and computations. The interested reader may cbtain the details

from the author by request, and is invited to check the computations himself.

The book by Shorey and Tijdeman [1986] gives a good survey of the diophantine
equations for which computable upper bounds for the solutions can be found
using the Gelfond-Baker method (see also Shorey, van der Poorten, Tijdeman
and Schinzel ({1977], and Stroeker and Tijdeman [1982]). Some of these
equations can be completely solved by the methods described in this thesis,
among which there are purely exponential equations, equations involving
binary recurrence sequences, and Thue equations and Thue-Mahler equations.
Especially the latter two are of impertance in various other parts of number
theory. For example, they are the key to solving Mordell equations and
various equations arising in algebraic number theory. The Gelfond-Baker
method was used to actually solve a diophantine equation for the first time
in the work of Baker and Davenport [1969], who solved the system of

diophantine equations

3'x2 -2 = y2 , 8'x2 -7 = 22

Other equations occurring in the literature for which upper bounds for the

solutions can be computed, cannot be treated as easily by our algorithmic

12



methods, because the application of the theory of linear forms in logarithms
is more complicated for these equations, and moreover the upper bounds are
essentially too large. An example of this kind is the Catalan equation
a® - by =1 in integers a, b, x, y , all =2 2 . Catalan conjectured in 1844
that this equation has only the solution (a,b,x,y) = (3,2,2,3) . Tijdeman
[1976] proved that the solutions of the Catalan equation are bounded by a
computable number. This number can be taken to be exp(exp(exp(exp(730)))) ,
according to Langevin [1976]. However, we fail to see how the methods that we

describe in the forthcoming chapters can be applied for completely solving

the Catalan equation.

Another diophantine equation, that for centuries has attracted the attention
of many mathematicians, is the Fermat equation X"+ yn -z in integers
X, ¥, 2, n, with n =3 and =x-y-z 0 . It is conjectured to have no
solutions. Faltings [1983] proved that for fixed n the number of solutions
is finite. His proof is ineffective, and not based on the Gelfond-Baker
theory. The Gelfond-Baker theory seems not to be strong enough to dela with
the Fermat equation in its full generality, not even if n 1is fixed. For

partial results on the Fermat equation that have been obtained using this

theory, see Tijdeman [1985] and Chapter 11 of Shorey and Tijdeman [1986].

We remark that for many diophantine equations recently important progress
has been made in determining upper bounds for the number of solutions. See
Evertse [1983] and Evertse, Gyory, Stewart and Tijdeman [1987] for a survey.
These results are often remarkably sharp, but ineffective, so that they

cannot be used for actually finding the solutions.

To conclude this section we give an overview of the remaining chapters of
this thesis. It is divided into three parts: Chapter 1 is introductory,
Chapters 2 and 3 give the necessary preliminaries, and Chapters 4 to 8 deal

with various types of diophantine equations.

Sections 1.2 to 1.5 give a short introduction to the Gelfond-Baker theory,
diophantine approximation theory, the algorithmic aspects of diophantine
approximation, and the procedure for reducing upper bounds, respectively, for
the non-specialist. Chapter 2 contains the preliminary results that we need
from algebraic number theory and from the theory of p-adic numbers and
functions, and quotes in full detail the theorems from the Gelfond-Baker

theory which we need. It concludes with some remarks on numerical methods.

13



Chapter 3 gives in detail the algorithms in the field of diophantine

approximation theory that we apply in the subsequent chapters.

The remaining Chapters 4 to 8 are each devoted to a certain type of

diophantine equation. Let Py o P, be a fixed set of distinct primes.
Let S be the set of positive integers composed of primes S,
only.

Chapter 4 deals with elements of binary recurrence sequences ("generalized
Fibonacci sequences") that are in S , and gives their application to mixed
quadratic-exponential equations, such as the generalized Ramanujan-Nagell
equation x2 + keSS ( k fixed). The diophantine approximation part of this
chapter is interesting for two reasons: the p-adic approximation is very
simple. and in the case of the recurrence having negative discriminant, a
nice interplay of p-adic and real/complex approximation arguments occurs. The
research for Chapter 4 was done partly in cooperation with A. Pethdé from
Debrecen. The results have been published in Pethé and de Weger [1986] and de

Weger [1986b],

Chapter 5 deals with the diophantine inequality 0 < x - y < y6 , where x, vy
are in 5 , ard § € (0,1) 1is fixed. Chapter 6 deals with x + y = z , where
X, v, z € S§ , which can be considered as the p-adic analogue of the
inequality of Chapter 5. These two equations are the simplest examples of
diophantine equations that can be treated by our method. Since they are
already purely exponential equations, the first (transformation) step is
trivial. So the linear forms in logarithms are directly related to the
equations themselves. Therefore they serve as good examples to get a clear
understanding of the diophantine approximation part of our method. The
results of these chapters have been published in de Weger [19873].

Chapter 7 studies the equation x + y = 22 , where x, vyeS , and z € 7
This equation is a further generalization of the generalized Ramanujan-Nagell

equation, studied in Chapter 4.

In Chapter 8 a procedure is given to solve Thue equations, that works in
principle for Thue equations of any degree. It is applied to find all
integral points on the elliptic curve y2 = x3 - 4-x + 1 . We also mention
briefly how Thue-Mahler equations can be dealt with. This chapter has been

written jointly with N. Tzanakis from Iraklion. The results have been

14



published in Tzanakis and de Weger [1987], and in de Weger [1987b].

1.2. The Gelfond-Baker method.

In Section 1.1 we have explained that before applying the Gelfond-Baker
method to some diophantine equation, the equation should be transformed into
a purely exponential diophantine equation or inequality with not too many
terms (cf. (1.1), (1.2)). In this section we sketch the arguments from the
Gelfond-Baker theory that lead to upper bounds for the variables of this

exponential equation/inequality.

Let us first treat the case of the inequality (1.2). It may be assumed to
have the form

s
. U a; - 1 < Co-exp(—6'N) ,
where the a, are fixed algebraic numbers, N = max[nil , and CO, 5§ are
positive constants. In the examples we study, we encounter one of the
following two cases: either all a, are real, or |ai| =1 for all i . In
the real case, if N 1is large enough, the linear form in logarithms

s

A = log|a0| + iElnitlog|ai|

must satisfy

|A] < Cé~exp(—5~N) (1.3)

for some Cé . In the complex case, the same inequality (1.3) follows for the

linear form

I >0

A = Log a, +

0 ni-Log ay + k-Log(-1)

i=]1

s
+ .Z ni-Arg a, + k-m ] ,
i=1

= i-( Arg ay

where the Log and Arg functions take their principal values. Now we can
apply one of the many results from the Gelfond-Baker theory, giving an

explicit lower bound for {[A] in terms of N , e.g. the following theorem.

15



THEOREM 1.1. (Baker [1972]). Let A be as above. There exist computable

constants Cl' C2 , depending on the a; only, such that if A » O then

[A] > exp(—(c1+c2-1og Ny .

We know that A = O . Combining (1.3) and Theorem 1.1 we obtain

C, + log C/ C
N < 1 0 . 2

3 < log N .

It follows that N 1is bounded from above.

Next, consider the exponential equation (1.1). We can write it as

s i T mj
ag: Ml -1 =85 187

=1 i=1
where the a, ﬁj are fixed algebraic numbers. Let Hp be the maximum of
the |n.|, |mj| where i, j run through the set of indices for which a;
resp. fB. are non-units. Let H be the maximum of the |ni|, |mj| where
i, j run through the set of all indices. Suppose that p is a rational
prime lying above ﬂj for some j . There are constants ¢ such that

n,
i
a; —1) < eyt cz-mj

[ X
Jur

ordp(ao-i

Assuming that ordp(ai) = 0 for all i , we may write down a p-adic linear

form in logarithms

A = log «a

%0 + ni~1ogpai ,

[ R}

i=1

for which, if mj is large enough, it follows that

ordp(A) < ¢y + c2~mj . (1.4)

We are now in a position to apply the following result from the p-adic

Gelfond-Baker theory. Here, N = max|ni|

THEOREM 1.2. (van der Poorten [1977], Yu [1987a]). Let A , p be as above.

There exist computable constants C3, Ca , depending only on the a; and on

p , such that if A » O then

ordp(A) < C, + Ca-log N .

3
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Applying (1.4) and Theorem 1.2 for all possible p we obtain constants C!

3
CA with

Hp < C3 + C4~1og H

If H < CS-Hp for some constant C5 , then this immediately yields an upper

bound for H . If H > CS-Hp , then it can be shown that there exists a

conjugate of the as ﬂj , denoted with a prime sign, for which
r m,
|85 11 83| < exp(-cgom
0 j=1 j 6

for a constant C6 (cf. the proof of Theorem 1.4, pp. 45-49, of Shorey and

Tijdeman [1986]). Now we can apply Theorem 1.1. This yields
n,

s
6‘ M ail—l‘ > exp(—(C7+C8-log H)] .
i=1

a
It follows that H is bounded from above.

If it happens that none of the @, ﬂj are units, then of course the

application of Theorem 1.2 suffices.

We remark that, in order to be able to completely solve a diophantine
equation, it 1is crucial that all constants can be computed explicitly.
Therefore we can only use the bounds from the Gelfond-Baker theory that are

completely explicit. We give details of such theorems in Section 2.4.

1.3. Theoretical diophantine approximation.

In this section we briefly mention some results from diophantine
approximation theory, thus giving a background to the next section. We refer
to Koksma [1937], Cassels [1957] (Chapters I and III) and to Hardy and Wright
[19879] (Chapters XI and XXIII), for further details.

The simplest form of diophantine approximation in the real case is that of
approximation of a real number ¢ by rational numbers p/q . It is well
known that if © 1is irrational, then there exist infinitely many solutions

(p.q) € I>xN with (p,q) = 1 of the diophantine inequality

-2
lo-21<a
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All convergents from the continued fraction expansion of 9 are such

solutions. The convergents are simple to compute for any particular ¢ € R

One way of generalizing this is to study simultaneous approximations to a set

of real numbers 61, R 6n , l.e. rational approximations to 61 all

having the same denominator. It is well known that the system of inequalities

Py -
[0, - = | <q /™ o 5 1 0
1 q
has infinitely many solutions (pl,...,pn,q) if at least one of the 01 is

irrational. But it is much harder to find solutions of such inequalities than
in the case n = 1 . Some multi-dimensional continued fraction algorithms
have been devised (cf. Brentjes [1981] for a survey), but they seem not to
have the desired simplicity and generality. We shall see later how we can

apply the so-called L3—algorithm to this problem.

Another way of generalizing the simplest case of diophantine approximation is

to study linear forms, such as

m

L= Ygq,.9, ,

j=1 J 3]
where 61, e, 6m are given real numbers, and pr e q, are the
unknowns in Z . Put Q = lnaxlqi| . A classical theorem guarantees the
existence of a solution (p,ql,...,qm) of the inequality
—m

| L-p ] <Q

Note that the case m = 1 becomes our first inequality on dividing by

q =9 - Also in this case the L3«algorithm is very useful, as we shall see

below.
We can incorporate the two generalizations above in a further generalization,

that of simultaneous approximation of linear forms. Let real numbers ﬁij be

given for i =1, ..., n, j=1, ..., m . Put

A celebrated theorem of Minkowski states that there exists a solution

(pl,...,pn,ql,...,qm) of the system of inequalities

18



-m/n :
| Li - Py ] <Q for 1 1, ..., n
As we shall show in Section 1.4, the L3—algorithm may be applied to this
general form. We actually compute solutions of systems of inequalities that
are slightly weaker in the sense that the right hand side is multiplied by a

constant larger than 1.

We now consider inhomogeneous approximation. This means that for all i

there is an inhomogeneous term ﬂi in the linear form Li , viz.

Again, there exists a constant c¢ such that the system

L, -p, | <cQ™"

i for i =1, ..., n,

under some independence condition on the A, and ﬂij , has a solution. This

i
is Kronecker's theorem. The simplest case m = n =1 comes down to

-1
l 98 -p+p | <c-q

To conclude this section, we remark that there is a p-adic analogue of this

theory of diophantine approximation, founded by Mahler and Lutz. If we

replace in the above considerations R by @p , the absolute value |[-| by
the p-adic value |-|p , and the measure Q for an approximation
(pl,...,pn,ql,..‘,qm) by any convex norm Q(pl""’pn’ql""'qm) , then the

p-adic analogues of the theorems of Minkowski and Kronecker are essentially
analogous tc the above mentioned results in the real case. See Koksma [1937]

for references to Mahler’s work, and Lutz [1951].

1.4. Computational diophantine approximation.

In this section we give some idea of practically solving the diophantine
approximation problems that we encounter in solving diophantine equations. In
this section we give no rigorous treatment. We neglect worst cases, and
concentrate on how things are expected to work, and appear to work in
practice. For a more rigorous theoretical treatment we refer to a forthcoming

publication by Tijdeman, Wang and the present author. In the subsequent
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chapters of this thesis many examples are given, showing that our methods are
indeed useful in practice. Applying the method in practice may be the best

way of acquiring the necessary Fingerspitzengefuhl for the method.

We shall deal with the following computational diophantine approximation
problem. Let Bij’ ﬁi € R be given, and let | S DI be
integral unknowns with Q = max|qj| . Let Li be as above. Let a positive
constant Q0 , assumed to be a rather large number, 1050 say, be given. Find

a lower bound for the value of

max | Ly - Py |
i
where (pl,...,pn,ql,...,qm) runs through the set of values with Q < QO
From the theory outlined in Section 1.3 it follows that one will be satisfied

if this lower bound is of the size Qam/n For the p-adic case an analogous

problem may be formulated.

Related problems in diophantine approximation theory are those of actually
finding a good or the best solution of max]Li—pil < ¢ for a fixed ¢ > 0

As we shall see, the L3—algorithm is a very useful tool for finding good
solutions. The problem of finding the best solution however seems to be
essentially more difficult. We note that in most of our applications of
solving diophantine equations it suffices to have a suitable lower bound for

max}Li—pi|

The computational tool that we use to solve the afore-mentioned problems is
the so-called L3—1attice basis reduction algorithm, described in Lenstra,
Lenstra and Lovdsz [1982]. We shall give details of this algorithm in Chapter
3. Below we briefly indicate how it can be used to solve diophantine

approximation problems.

Let T be a lattice in R" . The L3—a1gorithm accepts as input an arbitrary

basis b e, bn of T . As output it gives another basis Sy wen & of

1’ ' =n

the same lattice I , that is a so-called reduced basis. The concept reduced
means something like nearly orthogonal. From a reduced basis it is possible
to compute lower bounds for the following two quantities: (i), the length of

the non-zero lattice point that is nearest to the origin, viz.

LT) = min [x]| ,
O=xerl’
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(cf. Llenstra, Lenstra and Lovdsz [1982], Proposition (1.11) and our Lemma
3.4), (ii), for any given point y € R" , the distance from y to the

nearest lattice point, viz.

LT, y) = min |x-y] ,
xeT
(cf. our Lemmas 3.5 and 3.6). This algorithm enjoys the property that these
lower bounds are usually near to the actual minimal solutions. In a typical
situation, where the lattice is not too distorted, the vectors <5 of the
reduced basis all have about the same length, which is of the order of

magnitude of
det(ry/m

The value of {£(I') as well as the lower bounds computed for it, are about as
large as that. If y 1is not too close to a lattice point, the same holds for
E(T,y) . Moreover, the running time of the algorithm is good, both in the
theoretical sense (it 1is polynomial-time in the 1length of the input-

parameters), and in the practical sense.

To solve the problem of finding a lower bounds for max|Li-pi| as formulated

above, we take the lattice T as follows. Let € be an integer, at least as

large as Qé+m/n The lattice T , of dimension n + m , is defined by
specifying a basis, namely the column vectors bl' e, hn+m of the matrix
[ 1
%]
2 1
8 = [Cvﬁll] [C-@lm] -C
%]
[C-ﬂnl] [C-ﬁnm] -C

(The symbol @ means that all not explicitly given entries are zero).
Applying the L3—a1gorithm to this lattice we find a reduced basis, of which
the basis vectors will have lengths of about Cn/(m+n) , which is roughly the
size of QO . Generally speaking, the larger C is, the larger the lengths
of the basis vectors of a reduced basis will be (and the larger the lower

bounds for €(I') and {(I',y) will be).

Let us first treat the homogeneous case, i.e. ﬂi = 0 for all i . Consider

the lattice point x = 8«[q1,...,qm,pl,...pn]T . It is equal to
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where

From the application of the L3—a1gorichm we find a lower bound for 4£(I') , of
size QO . We assume it to be large enough (if this is not the case, we try a
somewhat larger value for C , and perform the L3—algorithm again for the

lattice defined for this C ). So we may assume that there is a small

constant ¢ such that
n
= 2 "2 2 2
‘X (L,-Cop)" 2 LI)" - m-Qy > ¢;-Q
i=1
We have |ii—C-Lil < m-QO , so we may assume that for small constants cy Cy

-1 -
-C -max|Li—C~pi| > c3-QO/C

> -p.| >
maV.[Li pll c,

By the choice of G this last bound has the required size.

Next, we study the inhomogeneous case, where not all ﬂi are zero. We take
the same lattice I as in the homogeneous case (note that the lattice

definition depends only on the 6ij and the C ). Consider the point
= (0, ,0,-(C ), —lep )T
Yy = M,...,Y, IR n

From the reduced basis found by the L3—algorithm we have a lower becund for

€(T,y) . Assume that it is large enough, and of size Qo . We take the same

lattice point x = B-(ql,...,qm,pl,...pn)T as in the homogeneous case. Then
- - T
X-Y-= [ql,‘..,qm,Ll—C~pl,...,Ln—C-pn] ,
where
N m
L - [CB]+ jzlqj-[c-ﬂij] for 1 =1, ..., n

The same reasoning as in the homogeneous case now yields the desired result.
. 3 R -

Note that if we have performed the L -algorithm once for given 6ij , we may

use the result to treat the homogeneous case, and many inhomogeneous cases

with different ﬂi 's as well, as long as the ﬂij’s are the same.
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The above process describes how to find lower bounds for systems of
diophantine inequalities. It will be clear from the above that it is not
difficult to find good solutions, i.e. (ql,...,qm, pl,...,pn) with Q < QO
and max[Li—pi) near to the best possible value. In particular, the basis
vectors of a reduced basis are adequate for the homogeneous case, and for the
inhomogeneous case the lattice points near to y will be such solutions. The
lattice points near to y are not difficult to find once a reduced basis is
available. Specifically, if sl, e, sn € R are the coordinates of y with

respect to a reduced basis, then one may take the lattice points with

coordinates ti € Z that are near to 4 (i=1, ..., n).
In the definition of the matrix above the expressions [C~6ij] occur. Using
these expressions we have constructed a lattice r that is completely

integral, i.e. T C ™" . The La—algorithm can be adapted to work exact for
those lattices, so that younding-off errors are avoided (cf. Section 3.5).
The "errors" occur in the difference between the ii and the C-Li , and are
thus kept under control by choosing the proper constants €1y Sy Cg - of
course one should take care to have the numerical values of the 0ij and the
B. correct to a sufficient precision. We shall discuss such numerical

i
problems briefly in Section 2.5.

A possible variation of the above diophantine approximation problem is to

give weights to the linear forms Li , i.e. to look for a lower bound for

where the w. are fixed positive numbers. This situation can be dealt with
easily by replacing the C ‘s in the (n+i) th row of the matrix by proper

constants depending on v,

Another variation is the problem where not all the variables qj have the

same upper bound QO . To illustrate this, assume that n =1 | and that

9,
1

=
]

I8
L0

Now suppose that for some Q, > Q, (it will be handy to have Q Q, ) we
pp 1 2 y 2 1

are interested in the solutions with



lq.| = Q2 for j = m1+1, .., m,

J
lpl = Q,
m m-m +1
Next let C be of the size of Ql ~Q2 , and take the matrix
[ 1
7 1}
o Q%
Q,/Q,
[c-o,] ... [c-ﬁml] (c 6m1+1] .. [C ] -C-Q/Q,
For a lattice point (ql,...,qm,i—C-p)T we expect that |L-C-p| > c-Q1 for
—(ml—l) —(m—m1+l)
some ¢ . It follows that |L-p| > c'-Ql/C > c"-Ql ~Q2 for some
c¢’, c¢" . This wvariant 1is wuseful when a combination of real and p-adic

techniques is used, such as for the Thue-Mahler equation (see Section 8.6).

We conclude this section by giving the analogous method of p-adic diophantine

approximation. We assume that the 0ij' ﬂi are in @p , and, moreover, that
they are p-adic integers. Let NO =N uU {0} . For any p-adic integer vy and
any p € NO we denote by 7(”) the unique rational integer such that

¥ o= 7(#) (mod p#) , 0 =< 7(#) < p“ .

Let p € N be such that p’J is roughly the same size as Qé+m/n , and

assume that p is large enough (it is the analogue of the constant C in the
real case above). Take for T the lattice of which a basis is given by the

column vectors of the matrix

[ 1
%)
@ 1
_ (») () _p
B = 611 A 61m P
: : & .

) (B n
6n1 . 6nm P

Consider the lattice point
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T T
B'(ql”"’qm’zl""'zn) = (ql,...,qm,pl,...,pn)

Then it is obvious that

- ™) p
Pi = JE;*J"% *Zp

Hence the lattice I' can be described as the set

T m+n
T ={ (ql,...,qm,pl,...,pn) e Z |
m
Z q. 9., = p, (mod p”) for i=1, ..., n)
. j ij i
j=1
The L3—algorithm provides a lower bound for the length of the nonzero vectors
in this set, which is of the same size as pu-n/(n+m) , and that of QO

This yields the desired result, if u is taken large enough.

For the inhomogeneous case, put
_ _aw) _p(BNT
= (0,05 g P,

and consider the set

* T m+n
' = { [ql,...,qm,pl,..-,Pn) €z
- "
ﬂi + jzlqj.gij = pi (mod p*) for i=1, ..., n}

* *
Then x €T if and only if x +yeT , so T is a translated lattice. A

lower bound for £(I',y) now yields the desired result.

Again variations are possible, as in the real case, e.g. by replacing on the
(n+i) th row the u by different By It is even possible in this way to

treat more than one prime p at the same time.

We conclude this section with three remarks. Firstly, in the case that the
dimension of the lattice under consideration is only 2, the L3—algorithm is
essentially the continued fraction algorithm, and so yields nothing new. For
the p-adic continued fraction algorithm, see de Weger [19868]. Secondly, the
inhomogeneous case of diophantine approximation of one linear form of real
numbers can also be treated by what is known as Davenport’'s lemma, cf. Baker

and Davenport [1969] (and its multi-dimensional generalization, cf. Ellison
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[19713]). We will return to this in Chapter 3, and explain there why we

prefer our method.

Finally, one of the nice features of the above method of practical
diophantine approximation is that if an extreme solution exists, then in the
homogeneous case the lattice (with proper constant C or p ) will be
distorted. This means that the reduced basis will not be as nice as expected,
for example there might be a basis vector in it that is substantially shorter
than the other ones. In the inhomogeneous case the existence of an extreme
solution means that there is a lattice point extremely near to y . The
algorithm detects such an extraordinary situation at once, and in most cases
the extremal solution is presented explicitly (e.g. in the homogeneous case
as one of the vectors of the reduced basis). One can check whether this
extremal solution actually satisfies the original equation, and then proceed
by replacing in the above reasoning &(I') or {£(I',y) by lower bounds for
all vectors in the lattice except the extremal one. These new lower bounds
will in general be of the expected size. However, when we solved diophantine

equations in practice, we have never met such an extraordinary situation.

1.5. The procedure for reducing upper bounds.

We have seen in Section 1.2 how upper bounds for the solutions of the
exponential inequalities and equations occurring there can be found. In
Section 1.4 we have studied some diophantine approximation theory from a

practical point of view. Now these two things come together.

From the application of the Gelfond-Baker theory we are left with the

following problem. We have a linear form

where the g and ﬂj are constants (that they are logarithms of algebraic
numbers is now of no importance anymore), and the nj are integral unknowns.

We know that A 1is extremely close to 0, namely
IA| < c-exp(-§-N) ,

where ¢, § are (small) constants, and N = max]nj] . Finally, we have an

explicit upper bound N0 for N . This N0 is very large, 1050 say.
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It will be clear from Section 1.4 that the methods outlined there are of use

for solving this problem. For Q0 we take N. . We have n =1 . In the real
case we expect, by choosing C at least of size Ng+1 , that

Il > et N,
for a small constant ¢’ . It follows by combining the two inequalities for
J]A] that

N < log(c/c’')/6 + (m/§)-log NO

So the upper bound N0 for N 1is reduced to an upper bound N1 of the size
of 1log NO , which is a considerable improvement indeed. We now may apply the
procedure with N1 instead of No , and repeat until no further improvement
is obtained. In practice it appears almost always to be the case that in that
situation the reduced upper bound is near to the actual largest solution,
anyway so small that simple methods of finding all the solutions below that

bound suffice.

In the p-adic case an analogous reduction of upper bounds can be reached,

following a similar argument. We have for the linear form A (cf. (1.4)),

<
ordp(A) < cq + ¢y mj ,
where ¢ S are small constants, and mj is one of the wvariables.
Moreover, the variables are bounded by a large constant N0 , that is
explicitly known. We take u such that p# is at least of size N8+l , So

that the lower bound for the shortest nonzero vector in T (or T ) 1is

larger than /m-N0 . Then it follows that the elements of the lattice I (or
*

of the translated lattice T ) cannot be solutions of (1.2). Therefore,

c1 + 02-mj < u,

so that we find a new upper bound for mj , that is of the size of u , which
is about log NO / log p . We repeat this procedure for all the mj , in
order to obtain a reduced upper bound for H_ . If this is not yet sufficient
to derive at once a reduced upper bound E;r H , then we can do so by
applying a reduction step for real linear forms, where we may take advantage
of the fact that for some of the variables a much better upper bound has just
been found (cf. the second variation in Section 1.4). Again we repeat the

whole procedure as far as possible.
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CHAPTER 2. PRELIMINARIES.

2.1. Algebraic number theory.

In this section we quote results from algebraic number theory that we use
throughout the remaining chapters. We refer to Borevich and Shafarevich

[1966] or other text-books on algebraic number theory for full details.

Let K be a finite algebraic extension of @ , of degree D = [K:Q@] . There
are D embeddings o : K> C . Let a € K be an element of degree d , and
let ag > 0 be the leading coefficient of its minimal polynomial over 7

We define the (logarithmic) height h(a) by

h(a) = %~10g[aOD/d~ﬂmax(l,[a(a)])] ,
a

where the product is taken over all embeddings ¢ . Note that this definition
does not depend on the field K . Hence, if the conjugates of « are
10 o ag s then the above definition applied for K = Q(a) yields

d
h(a) = %-1og[a0' ﬂ max(1,|ai|)j
i=1

In particular, if o € @ , then with a = p/q for p, g€ Z with (p,q) =1
we have h(a) = log max(|p|,|q|) , and if a € Z then h(a) = log|a]

Let there be s real and 2-t non-real embeddings (with D = s + 2.t ).

Then Dirichlet’s Unit Theorem states that there exists a system of r
independent units Egs e €0 where r =s + t — 1 , such that the group
of units of K 1is given by
2 2
{ §-el ey | ¢ a root of unity, a; €Z for 1i=1,...,r }

There are only finitely many roots of unity in K . Any set of independent
units that generate the torsion-free part of the unit group is called a

system of fundamental units.

The number a 1is called an algebraic integer if ay = 1 . Let the norm of an
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element o € K be defined by
d
D/d
NK/®<a) = flota) = (.ﬂ ai] .
o i=1

For algebraic integers, Q(a) € Z . The units are precisely the elements

N
K/
of norm 1 . Two elements a, B of K are called associates if there is a
unit € such that a = ¢ . Let (a) denote the ideal generated by «a
Associated elements generate the same ideal, and distinct generators of an

ideal are associated. There exist only finitely many non-associated algebraic

integers in K with given norm. The ring of algebraic integers is denoted by

OK . Let ays s Op be elements of DK that are @-linearly independent.
Then Z~al X ...0X ZvaD is called an order of K if it is a subring of the
'maximal order’ OK

In K any algebraic integer can be written as a product of irreducible
elements. Here an irreducible element (prime element) is an element that has
no integral divisors but its own associates. However, this decomposition into
primes need not be unique. Ideals can also be decomposed into prime ideals,
and this decomposition is unique. A principal ideal is an ideal generated by
a single element a . Two fractional ideals are called equivalent if their
quotient is principal. It is well known that there are only finitely many
equivalence classes. Their number if called the class number hK . For an
ideal a it is always true that a K is a principal ideal. The norm of the

(integral) ideal a 1is defined by N = #(OK/Q)

k(@
For a prime ideal p there is always a rational prime number p such that
P 1is a divisor of (p) . We say that p Iies above p . The ramification
index ep is the largest power to which P divides (p) . The residue class
degree fp is the integer such that

fp
NK/Q(P) =P

We denote by ordp(a) the exact power to which the prime ideal p divides
the ideal a . For fractional ideals a this number can of course be

negative. For numbers a we write ordp(a) for ordp((a)) . Note that
d = d
or p(a) or p(a)/ep

can be defined for all a € K . We will return to this in Section 2.3, which

deals with p-adic number theory.
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2.2. Some auxiliary lemmas.

In this section we give a few simple auxiliary lemmas. The first one enables
us to find an upper bound in closed form for some real number x > 1 that is

bounded by a polynomial in log x . See Pethé and de Weger [1986]}, Lemma 2.3.

LEMMA 2.1. Let a=>=0, h=z=1, b>0, and let x € R, x > 1 satisfy
Xx < a + b-(log x)h .

If b > (e2/h)h then
x < 2h~[al/h+bl/h~1og(hh-b)]h ,

and if b < (ez/h)h then

X =<

AN AT

Proof. We may assume that x is the largest solution of

x = a + b-(log x)h .

1/h 1/h 1/h .
By (zl+22) < zy + z, we infer
xl/h < al/h + c-log(xl/h) R
where ¢ = h~b1/h . Define y by xl/h = (l+y)-c-log ¢ . From

log ¢ < log(c-log c)
it follows that
ch-(log c)h < b-(log[ch~(log c)hnh ,

which implies x > ch~(log c)h . Hence y > 0 . Now,

(l+y)-c-log c = xl/h < al/h + c-log(l+y) + c-log ¢ + c-loglog ¢

1/h

< a + c'y + c-log ¢ + c-loglog ¢

Hence

1/h

yc-(log c - 1) <a + c-loglog ¢

If ¢ = e2 it follows that

30



xl/h = c-log ¢ + y-c-log ¢ < c-log c + ~419§454~~(al/h+c-loglog c)
log ¢ - 1
< 2~(a1/h+c-1og c)
2 2 h h
If ¢ < e , then note that x < a + (e"/h) -(log x) . So we may assume
c = 82 in this case. The result follows. ]
The next lemmas make explicit that x and log(l+x) are near if x| is

small in the real and complex case, respectively.

LEMMA 2.2. lLet ae€lR . If a <1 and |x| < a then

—log(l-a)
a

[Tog(1+x) | < <l

and

x| <
l-e

Proof. Note that log(l+x)/x 1is a strictly positive and strictly decreasing
function for |x| < 1 . Hence it is for |[x| < a always less than its value

. . X
at x = —a . The same is true for the function x/(e"-1) . 0

LEMMA 2.3. Let 0 <a=<n . If |x| <a then

a i-x
x| Tsinca/2y 1 1
i-x
If a < 2, |e -1 < a and |x| < m then
1x] < 2~arc51n(a/2)'lel~x_ll
a
i-x L1 L1 .
Proof. Note that |e -1 = 2~|51n(5-x)| . and that 2-51n(z-x)/x is a

positive and even function, that decreases on 0 =< x < a . Hence it takes its
minimal value at x = a . The first inequality now follows. The second one
can be proved in a similar way. )

2.3. p-adic numbers and functions.

In this section we mention the facts about p-adic numbers and functions that

we use. For details we refer to Bachman [1964] and Koblitz [1977], [1980].
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We assume that the reader is familiar with the field of p-adic numbers ®p
and the p-adic valuation ordp . Note that the ordinary ordp as defined in
@p coincides with the definition given in Section 2.1. We denote by I the
completion of the algebraic closure of ®p , i.e. the field to which all

p-adic theory is applied.

Every nonzero number o € @p has a p-adic expansion

where k = ordp(a) and the p-adic digits u; are in {0, 1, ..., p-1 1} ,
with u 0 . The number O can be represented in this way by taking k =0
and all digits equal to O , and ordp(O) = «© by definition. If ordp(a) >0
then o 1is called a p-adic integer. The set of p-adic integers is denoted by
Zp . A p-adic unit is an o € @p with ordp(a) = 0 . For any p-adic integer

1
u ~pl
o 1

a and any p € N there exists a unique rational integer

=
0 a(ﬂ) - .z

i
satisfying

(») )

< a < plJ -1

ord (a-o )y =z p o,
p(

For ordp(a) > k we also write a = 0 (mod pk) . The p-adic norm is defined
by
-ord (a)

p

al =
Ilpp

In Section 2.1 we have seen how to define ordp and ordp on algebraic
extensions of @ . For any a € Op with ordp(a) > 1/(p-1) we can define

the p-adic logarithm logp(l+a) by the Taylor series
2 3
logp(1+a) =a-~a /2 +a /3 -

This logarithmic function has the well known properties, such as
logp(§1~§2) = 1ogp(§1) + 1ogp(§2) for all 51, 52 for which it is defined.
Further, logp(g) = 0 if and only if € 1is a root of unity. In @p the
only roots of unity are the (p-1) th roots of unity (if p 1s odd). Using
these properties, this logarithmic function can be extended to all & € ﬂp
with ordp(g) = 0 , as follows. Let k € N such that ordp(gk—l) > 1/(p-1)
Then
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1 k
1ogp(€) = E-logp[1+(§ -1} .

An equivalent definition is 1ogp(§) = logp(f/g) , where ¢ is a root of
unity such that ordp(f—g) > 0 . In this way the p-adic logarithm is a well
defined function. Note that logp(g) lies in the subfield of Qp generated
by £ . Finally we note that if ordp(f) > 1/(p-1) then

ord (¢) = ord (log (1+£))

2.4. Lower bounds for linear forms in logarithms.

In this section we quote in detail the results from the Gelfond-Baker theory
that we use. They yield lower bounds for linear forms in logarithms of
algebraic numbers. We do not always give the theorems in their full
generality, since in this thesis only linear forms with rational unknowns
occur, whereas most Gelfond-Baker theorems are formulated for linear forms
with algebraic unknowns. We selected results that give completely explicit
constants. The first result in this field for a linear form in logarithms
with at least three terms is due to Baker [1966], and in the p-adic case to
Coates [1969], [1970]. For a survey of this theory, see Baker [1977] and van
der Poorten {1977]. We will use more recent, sharper results, due to
Waldschmidt [1980] and Yu [19873]. Further improvements of the constants have

been reached, but too recently to be taken into account in this thesis.

First we deal with real/complex linear forms in logarithms. We quote the

result of Waldschmidt [1980].

LEMMA 2.4 (Waldschmidt). Let K be a number field with [K:Q} = D . Let
aps e @ € K , and bl’ e, bn eZ (n=2) . Let Vl’ e, Vn be
positive real numbers satisfying 1/D < V1 < ... =< Vn and

Vj > max [ h(aj), |log aj|/D ] for j =1, ..., n.
where log aj for j =1, ..., n 1is an arbitrary but fixed determination of

the logarithm of aj . Let V; = max(Vj,l) for j =n, n-1 , and put

n
A= z b.-log a,
j=1 J J

33



Put B = max lbil . If A= 0 then

1<i<n
e(n) 2-n n+2 +
|A] > exp [ -2 ‘n D ~V1~...-Vn-log(e-D-Vn_1)~
-( log B + 10g(e-D-V+) ) )
a ,

where e(n) = min [ 8-n + 51, 10-n + 33, 9-n + 39 ) . If, moreover, it is
known that [@(/al,ii‘,/ar):@] =" , then we can take e(n) = 9.n + 26 and

. ! n+4

replace the factor n? " in the above bound for Al by n

Waldschmidt’s main theorem does not give the constant e(n) as detailed as
we do, but he does so in his proof, cf. p. 283. We remark that improvements
of the above bounds have recently been found by Blass, Glass, Meronk and
Steiner [1987C], [1987d], Loxton, Mignotte, van der Poorten and Waldschmidt
[1987], and Philippon and Waldschmidt [1987]. For the case n = 2 , a sharp
bound has been given by Mignotte and Waldschmidt [1978].

In the p-adic case we quote two results: one due to Schinzel [1967] (Theorem
1) for the case of a linear form in logarithms with two terms, and another
for the general case, due to Yu [1987a] (Theorem 1, see also Yu [1987b]). We
note that Yu's bounds improve much upon the results of van der Poorten

[1977]. Moreover, van der Poorten’'s proofs seem to contain some errors. We

give Schinzel’s result for quadratic fields only.

LEMMA 2.5 (Schinzel). Let p be prime. Let A be a squarefree integer, and

let D be the discriminant of K = Q(YA) . Let £ = €"/¢é' and x = x"/x’

be eiements of K , where &', &", x', x" are algebraic integers. Put

1/4
L= log max (Je-d| % et el Jem ol femr] )

where |v| denores the maximal absolute value of the conjugates of v € K

Let P be a prime ideal of K with norm Np = pp . Put ¢y = 2/p-log p ,

¢ = ordp(p) . If ¢ or x is a y-adic unit and £n # xm , then

-2 4 4-p+b
p P

ordp(ﬁn—xm) < 106-¢7~@ -L ~[10g max(|m|,|n|)+(p-L-pp+2/L]3

LEMMA 2.6 (Yu). Let aps s o (n=2) be nonzero algebraic numbers.
Put L = @(al,...,an) , d=[L:Q] . Let bl’ e, bn be rational integers.
Let p be a prime ideal of L , lying above the rational prime p . Let ep
be the ramification index, and fp the residue class degree of p . Write
L for the completion of L with respect to ordp . (Note that for all
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B € Lp we have ordp(ﬂ) = ep-ordp(ﬂ) .) Let q be a rational prime such

that
fp
q/l p-(p "-1)
Let
vj > max | ha,), f?-(log p)/d) for j =1, ..., n,
7 + —
such that ‘1 < ... = Vn—l s Vn-l = max(l,Vn_l) R
B, > min |b.{ , B_=1]b |, B> max |b,]| ,
1<j<n,b, 0 J n n l<j<n-1
B > max ( LT P L N ).
3
W = max ( log(1l+,~_-B, log B, fp-(log p)/d )
Suppose that ordp(aj) =0 for j =1, ..., n, that
[Leag/%, . et/ iL) = q" (2.1)
n
by b
that ord (b_) < ord (b,) for j=1, ..., n, and a, +... -« N~ 1 . Then
P n P ] 1 n
b b
1 n n n+5/2 2-n 2
ordp(al e -1) < ¢ (p,n)-a  n -q” - (q-1)-log (n-q)-
fp 1.0 ~(n+2)
(p “1)'[2+511) -(fp~(10g p)/d) VeV
-(—E_+1og<a.d)]-(1og(4~d.v+ )+f_-(log p)/8-n)
6-n n-1 P ’
where

a; = 56-e/15 if n=<7 , a; = 8-¢/3 if n=218 ,
and Cl(p,n) is given by the following table, with for p =5

1.2
C)(p.m) = Gf (p,m) (24=p)

n 2 3 4 5 6 7 > 8

Cl(2,n) 768523 476217 373024 318871 284931 261379 2770008
01(3,n) 167881 104028 81486 69657 62243 57098 116055
Ci(p,n) 87055 53944 42255 36121 32276 24584 311077
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Remark. Yu [19873] announces that the ‘indeperidence condition’ (2.1) can be

removed. This may be at the cost of somewhat larger constants.

2.5. Numerical methods.

In solving diophantine equations using computational methods from diophantine
approximation theory, as we will do in Chapters 4 to 8, it is necessary to
have logarithms (real, complex or p-adic) of algebraic numbers available to a
large enough precision (maybe several hundreds of digits). We will not go
deeply into the problems of computing such approximations, but make only a

few remarks on it in this section.

To start with, the precision with which most computers (mainframes as well as
personal computers) work, is insufficient for our purposes. Usually at most
double precision (52 bits, equivalent to 15 decimal digits), or at best
quadruple precision (112 bits, equivalent to 33 decimal digits) is standard
available. This is not sufficient for our purposes, not only because we may
require larger precision, but also because we want to have the rounding off
errors under control, to be sure that no solution of a diophantine equation

is missed by unexpected consequences of rounding off errors.

Packages for computations with arbitrary precision are available and very
useful, e.g. the MP package of R.P. Brent (cf. Brent [1978]). It is not
difficult to write one’s own package for simple manipulations on
multi-precision numbers, such as addition, multiplication and division (cf.
Knuth [1981] for efficient algorithms). No such packages are available for
manipulations on p-adic numbers, but the programs are similar to those for

real numbers.

Computing roots of polynomials with integral coefficients can be done by
Newton's method, both in the real and the p-adic case. One should make sure
that the result obtained is correct to the desired precision, preferably not
(only) by substituting the found approximation of the root into the
polynomial and checking that the result is O within the desired precision,

but (also) by theoretical error estimates for the Newton method.

Computing logarithms can be done by the Newton method too. However, we did it

by using the Taylor series
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log(l+x) = x — x2/2 + x3/3 - ..,

or by the more rapidly converging series

1+x 3 5
1ogI:; = 2~( X +x /3 +x7/5+ ... ]
For |x| very small this method works fast, whereas for larger |x| the

following idea works well. Compute approximations to the desired precision of
log 1.1, log 1.0001, log 1.00000001 , say, and store them. Now compute

€ [1,1.1) and kl € NO such that

which is a matter of a few divisions of a multi-precision number with a
rational number with small numerator and denominator (11 and 10) only, that

can be done fast. Next, compute X, € [1,1.0001) and k2 € NO such that

)

X, = x2-1.0001 s

1

and Xy € [1,1.00000001) and k3 € WO such that

ks
x, = %,1.00000001

Then compute log Xy by the Taylor series, which converges very fast, and

compute log x by

log x = log x, + k3~log 1.00000001 + k,-log 1.0001 + kl-log 1.1

3 2

When computing all this, one should take care of having the rounding off
errors at each addition/multiplication under control. This can e.g. be done
by doing all computations twice, rounding off in different directions at each
step, such that finally a small interval is found in which the exact number

lies (with mathematical certainty).

Computation of arctan x is done by the Taylor series
3 5
arctan x = x - X /3 + x° /5 -

The number =« = 3.14159... can be computed rapidly by this series for the

arctan function, by the identity

m = l6-arctan 1/5 - 4.arctan 1/239
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Doing p-adic arithmetic has the advantage above real arithmetic that rounding
off errors do not tend to become larger, as long as one is not dividing by a
number with large p-adic order. If ordp(x) > 0 then 10gp(1+x) can be

computed by the Taylor series
2 3
1ogp(1+x) =X - X /2 +x/3+ ...,
and also it may be useful to compute
3 5
log —— = 2-( x + x7/3 + x7/5 + ... )

If x = 0 (mod p) and x = 1 (mod p) then logp X can be computed, since

there exists a k € N such that xk =1 (mod p) , and then
1 k
lo X = =-lo I+(x -1
g g log,( ))

and the above given Taylor series can be used to compute logp x . Note that
in computing the above mentioned Taylor series there will be factors p in
the denominators of the terms. Hence, to find the first u p-adic digits of
1ogp(1+x) , it is not enough to compute only the first y/ordp(x) terms of
the Taylor series, but the first k terms must be taken into account, where

k is the smallest integer satisfying
k-ordp(x) - log k/log p = p .

For rapid convergence of Taylor series it is desirable to apply them only for

numbers X with large p-adic order. For example,
1og3 4 =3 - 32/2 + 33/3 -

converges not as fast as

1 1 2 2 4 3.6
logy 4 — 3-log, 64 - 5»[ 737 - 77372 477373 - 00 ),
or as
B 143/5 3.3 5,0 .5
log, 4 = log, 1-375 = 2-(3/5+37/3:5" +37/5-5" + ... ),
or as
2
log, 4 = %~log3 liZ;éiléé - %'( 7-32/65 + 73-36/3~653
1-7-3°/65
+ 773105657 4 e )
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The above considerations are sufficient for doing exact computations with the
L3—algorithm, as we present it in Section 3.5. We also use the simple
continued fraction algorithm in some instances. This we do as follows.
Suppose we want to compute the continued fraction expansion of a real number

9 , that we have approximated by rational numbers 01, 62 such that

61 <H <Y, <9, + €

2 1
for some small ¢ . We can compute the continued fraction expansions of ﬂl
and 62 exactly. As far as they coincide, they coincide also with the
continued fraction expansion of ¢ . If the continued fraction expansion of

9 1is needed so far that the k th convergent with denominator . > XO
be known exactly, for a given (large) constant XO , then ¢ should be at
least as small as XO’

Almost all computer calculations done for the research of this thesis were
performed on an IBM 3083 computer at the Centraal Rekeninstituut of the
University of Leiden, using the Fortran-77 language. Also some computations
were done at a VAX 11/750 computer at the Rekencentrum of the University of

Twente.
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CHAPTER 3. ALGORITHMS FOR DIOPHANTINE APPROXIMATION.

3.1. Introduction.

In this section we give details of the computational methods we use to reduce
upper bounds for the solutions of diophantine equations. Our starting point
will always be a linear form A , that is close to O (in the real or p-adic
sense, with the word "close" defined explicitly in terms of an inequality
involving the unknowns), together with a large but explicitly known upper
bound for the absolute values of the unknowns. Our aim is to reduce the upper
bound by showing that there are no solutions between the new and the old

upper bound.

for a fixed prime

;

Let ¢ Ce 6n, B be given numbers, in R , or in Qp

P . Let x cees X be unknowns in Z . Put

We classify such linear forms according to three criteria:
> homogeneous if B = 0 , inhomogeneous if B = 0 ;
> one-dimensional if n =2 , multi-dimensional if n > 3 ;

- real if all the numbers are in R , p-adic if all the numbers are in Q

The reason that the case n = 2 is called one-dimensional is that in the
homogeneous case the linear form
= x,-9, + x,-0
A= x)B) Xy

leads to studying the simple, one-dimensional continued fraction expansion of

—61/§2 . The inhomogeneous case with n =1 , viz.
A=+ x9

is not of any interest in the real case, but it is of interest in the p-adic

case. We call this the zero-dimensional case.

In the p-adic case we require that the quotients ﬁi/ﬂj and ﬁ/ﬂj are in
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@p itself, whereas the numbers ﬁi, B are allowed to be in some larger

subfield of Qp

Let ¢, § be positive constants. Put X = maxlxi| . Let XO be a (large)

positive constant. In the real case we shall always assume that

|A] < c-exp(-6-X) , (3.1)

XsXO . (3.2)
Let c1r be real constants, with ¢, > 0 . In the p-adic case we shall
assume that Xj > 0 for some index j € {1,...,n} , and

ordp(A) > ¢ + cz-xj , (3.3)

X =< XO . (3.4)
Our aim is to find a constant X1 , of the size of log XO , such that in the
real case (3.2) can be replaced by X < X1 , and in the p-adic case the bound
Xj < XO (a consequence of (3.4)) can be improved to xj < X1
In the forthcoming sections we treat all cases, according to the

e : : . : 3 .
classification given above. We insert Sections 3.4, 3.5 on the L -algorithm,
which will be our main computational tool, Section 3.6 on finding short
vectors in lattices, and Section 3.13 on certain sublattices that are useful

for our applications.

3.2. Homogeneous one-dimensional approximation in the real case: continued

fractions.

We first study the case
A= xl~01 + x2-62

Put O = —61/62 . We assume that 9 is irrational. Let the continued

fraction expansion of ¥ be given by
8 =1{a,, a,, a R B

and let the convergents pn/qn for n=20, 1, 2, ... be defined by
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{ Pp=b Ppmag ., P oTagPLtP
’ q0 -1, qn+1 B an+1'qn + qn-l

It is well known that the convergents satisfy the inequalities

P
——L <=2t (3.5)
(an+l+2)'qn n #n+1 9
and that if p/q satisfies the inequality
1o -B <L (3.6)
g9 2-q

then p/q must be one of the convergents (cf. Hardy and Wright [1979],
Theorems 163, 171 and 184).

2[ , that Xy >0 ,

x2) =1 . From (3.1) it follows that there exists a number X

We may assume without loss of generality that |01| < |9

and that (Xl’
such that X > X implies X = Xy and (3.6) for (p,q) = (—xz,xl) . We now

have the following criteria.

LEMMA 3.1. (i). If (3.1) and (3.2) hold for Xgs Xy with X = X* , then

(~x2,x1) = (pk,qk) for an index k that satisfies

1
k < -1 + log(/5-X +1) /Llog ([(1+/5)] . (3.7)
Moreover, the partial quotient a1 satisfies
a > -2 4 10, -c Lex (6-q,) (3.8)
K+l 19517c ~rexpls-ay)/qy :

*
(ii). If for some k with 9 > X
> 16, (¢ Trexp(6-q,)/ 3.9
A1 7 I9plre rexp(érap) /ey

then (3.1) holds for (_XQ’Xl) = (pk,qk)

Proof. (i). By X = X* and (3.6) it follows that (_XZ’XI) = (pk,qk) for

an index k . Since q is at least the (k+1) th Fibonacci number, (3.7)
follows from Qe = X = X = Xo . To prove (3.8), apply (3.1) and the first
inequality of (3.5).

(ii). Combine (3.9) with the second inequality of (3.5). O
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We may apply Lemma 3.1(i) directly, or as follows.

LEMMA 3.2. Let

)

A = max(ak+l

where the maximum is taken over all indices k satisfying (3.7). If (3.1)

and (3.2) hold for x X with X > X, , then

1 72 1
X < X1 (c-(a+2)/19,1) + L10g x
Remark. From Lemma 3.2 an upper bound for X follows. We can apply Lemma

2.1 here, but Lemma 2.1 is sharp for large b only.

Proof. (3.1) and (3.5) yield
( +2) - 2o 4 e JIAL > q |9, -1 (6-X)
a ¥ -an > g 9, 1/1A0 > q - [9,]-c -exp

The result follows by applying Lemma 3.1(i). a

In practice it does not often occur that A 1is large. Therefore this lemma

is useful indeed.

Summarizing, this case comes down to computing the continued fraction of a
real number to a certain precision, and establishing that it has no extremely
large partial quotients. This idea has been applied in practice by Ellison
[1971b], by Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and Tijdeman
[1982]), and by Hunt and van der Poorten (unpublished) for solving
diophantine equations, by Steiner [1977] in connection with the Syracuse
(’3:N + 1') problem, and by Cherubini and Walliser [1987] (using a small
home computer only) for determining all imaginary quadratic number fields

with class number 1. We shall use it in Chapters 4 and 5.

3.3. Inhomogeneous one-dimensional approximation in the real case: the
Davenport lemma.

The next case is when A has the form

A=8+ Xl~§l + x2~@2 ,
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where B = 0 . We then use the so-called Davenport lemma, which was
introduced by Baker and Davenport [1969]. It 1is, 1like the homogeneous
one-dimensional case, based on the simple one-dimensional continued fraction

algorithm.

Put again © —61/62 , and put ¢ = ﬂ/ﬁz . Then we have

A
Y P - xl-ﬁ + x

2
2

Let p/q be a convergent of ¢ , with q > Xo . We now have the following

result.

LEMMA 3.3. (Davenport). Suppose that, in the above notation,

la-el > 2-%y/a , (3.10)

(by ”-H we denote the distance to the nearest integer). Then the solutions

of (3.1), (3.2) satisfy

1 2
X < z-log(q - e/|9,1 Xy) (3.11)

Proof. From (3.5) and (3.10) we infer
2:X/q < Jla (=xgorx ) 4x g (qo-p) | < ar[A/9, ] + Ixy1/q
By (3.1), (3.2), and

X, < qz-c«|6—1]~exp(—6-x) R

0 2
this leads to (3.11). 0
If (3.10) is not true for the first convergent with denominator > XO , then

one should try some further convergents. If q 1is not essentially larger
than XO , then (3.11) yields a reduced upper bound for X of size log XO s
as desired. If no q of the size of XO can be found that also satisfies
(3.10) (a situation which is very unlikely to occur, as experiments show),
then not all is lost, since then only very few exceptional possible solutions

have to be checked. See Baker and Davenport [1969] for details.

Summarizing, we see that in this case the essential idea is that an extremely

large solution of (3.1) and (3.2) leads to a large range of convergents p/q
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of © for which the values of |q-9¥| are all extremely small. In practice
it appears to be the case that q-¥ 1is always far enough from the nearest
integer (the values of “q-¢” seem to be distributed randomly over the
interval [0,0.5] ). This method has been used in practice by Baker and
Davenport [196%] as we already mentioned, by Ellison, Ellison, Pesek, Stahl
and Stall [1972], and by Steiner [1986]. We shall use it in Chapter 4.

3.4. The L3—lattice basis reduction algorithm, theory.

To deal with linear forms with n > 3 , a straightforward generalization of
the case n = 2 would be to study multi-dimensional continued fractions. For
a good survey of this field, see Brentjes [1981]. However, the available
algorithms in this field seem not to have the desired efficiency and
generality. Fortunately, since 1981 there is a useful alternative, which in a
sense is also a generalization of the one-dimensional continued fraction

algorithm.

In 1981, L. Lovdsz invented an algorithm, that has since then become known as
the L3—a1gorithm. It has been published in Lenstra, Lenstra and Lovész
[1982], Fig. 1, p. 521. Throughout this and the next section we refer to this
paper as "ZEL". The algorithm computes from an arbitrary basis of a lattice
in R™ another basis of this lattice, a so-called reduced basis, which has

certain nice properties (its vectors are nearly orthogonal).

The algorithm has many important applications in a variety of mathematical
fields, such as the factorization of polynomials (ZE£), public-key
cryptography (Lagarias and Odlyzko [1985]), and the disproof of the Mertens
Conjecture (0Odlyzko and te Riele [1985]). Of interest to us are its
applications to diophantine approximation, which already had been noticed in
LXr, p. 525. The algorithm has a very good theoretical complexity
(polynomial-time in the length of the input parameters), and performs also

very well in practical computations.

Let T ¢ R be a lattice, that is given by the basis hl’ e, hn . We

introduce the concept of a reduced basis of I' , according to EXZE, p.516. The
*

vectors hi (i=1, ..., n) and the real numbers By j (1=j<i=<n)

are inductively defined by
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i-1

b =b. - J b (b,,b}) / (br,b))
S SN U R TS B S S
* * n
Then Ql’ R, Qn is an orthogonal basis of R . We call the lattice basis
b., , b of T reduced 1if
1 n
|;ti’j|§% for 1 <=j<i=<n,
* * 2 3 * 2 .
Ihi+ui,i—1'hi—1| > :.'bi—ll for 1 <i=<n
Hence a reduced basis is nearly orthogonal. For a reduced basis bl’ e, hn
we have, by ZXL (1.7),
* —(n—
b, | = 2 (n 1)/2~|g1| for i=1, ..., n . (3.12)

We remark that a lattice may have more than one reduced basis, and that the
ordering of the basis vectors is not arbitrary. The L3—algorithm accepts as
input any basis bl’ e, hn of I , and it computes a reduced bhasis
S oehogy of that lattice. The properties of reduced bases that are of
most interest to us are the following. Let y € R” be a given point, that is
not a lattice point. We denote by {(I') the length of the shortest non-zero

vector in the lattice, viz.

L) = min (x| ,
O=xel
and we denote by {(I',y) the distance from y to the lattice point nearest

to it, viz.

4(T,y) = minjx-y|
xel’
From a reduced basis lower bounds for both L(T) and &I,y can be
computed, according to the following results.

LEMMA 3.4. (lenstra, Lenstra and Lovasz [1982]). Let c e, be a

=1’ n

[¢]

reduced basis of the lattice T . Then
ey 2 272

Proof . This is Proposition (1.11) from ZEE. We recall the proof here. Let

0 #»x €T be the lattice point with minimal length |x| = £(I') . Write
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i=1 i=1
*
with r, € z r; € R . Let io be the largest index such that r, - 0
* Oy
Then, since € --+» & span the same linear space as hl‘ . hi for
*
. ‘e . . ]
all i , and hi+1 is the projection of €41 o©n the orthogonal complement
*
of this linear space, it follows that r., = o Hence, by (3.12),
Yo 0
iO
* * * * *
t(F)Z _ IXI? -7 r12 thZ > rl2 |hi |2 . ‘lbi |2
i=1 0 0 0 0
= p) 172 27 o
i 1
0
LEMMA 3.5. Let L be a reduced basis of the lattice T , and let
n
Yy = izlsi~gi for S10 cee0 Sy € R , with not all s; in Z . Let iy be
the largest index such that 5 & Z . Then
0
—-(n-1)/2
R I A O AT
0
Proof. The proof of this lemma resembles that of Lemma 3.4. Let x € I' be
the lattice point nearest to y . So |x-y] = &(T,y) . Write
n n ., n n o,
x= )ryrep = Lrghy o y= bspep = Josicby
i=1 i=1 i=1 i=1
* *
with T e Z , T, S;, 8y e R . Let il be the largest index such that
r, #s Then, reasoning as in the proof of Lemma 3.4, we find
1 1
*
r, - s; =T, - s,
1 1 1 1
Using (3.12) it follows that
* —(n-
R e e W N O L I P
1 1 1 1 1
Obviously, i z i, . If i, =i, the result follows at once. If i > i
then s, €Z, s, »1r., , hence |r, -s. | 21 , and the result follows. @)
i i iy i, 7L
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The above lemma is rather weak in the extraordinary situation that s is
0
extremely close to an integer. If one of the other EH is not close to an

integer, we can apply the following variant.

LEMMA 3.6. Let ¢ (- be a reduced basis of the lattice T , and let

10 o
n

Y = izlsi~gi for S35 -0 S, € R , with not all s; in Z . Suppose that
there is an index io and constants 61 , 0< 62 < % such that

”Si” < 61 for 1 = 1O+1, e, o,

Is; 125,

0
Then
-(n-1)/2 . _ .
{(T,y) = 2 62 |91| (n—lo) 61 Ta¥ Igi|
1>10

Proof. With notation as in the proof of Lemma 3.5, let t, be the integer

nearest to s, , for i =i, + 1, and t, = s, for i =<i, . Put
i 0 i i 0
n n .
z= ) tye; = Ltyiby
i=1 i=1
with t, e R Let i be the largest index such that r, At Then
1 1
r, -t =r, -t
1 1 1 1
We have
Lr,y) = |2yl =z [2-z| - |z-y|
Now,
n
lz=yl = % Is;=t;l-le;l = (n-ig)-§ -max |e| ,
i=i +1 i>i
0 0
and, using (3.12),
n
2 * 2 2 2 * 2
fx-z|” = % (r -t ) byl 2 (xy -ty )by |
i=1 1 1 1
> (r, -t )52 ")
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Obviously, > i . If i, =1 the result follows at once. If i, > i

! 0 1 0 1 0

then ti e Z, ti = ri , hence |ri —ti | =21 > 52 , and the result
1 1 1 1 1

follows. O

Remark. Babai [1986] showed that the L3—a1gorithm can be used to find a
lattice point x with |[xz-y| = c¢-£(I',y) for a constant c depending on the
dimension of the lattice only. This result can also be used instead of Lemma

3.5 or 3.6.

3.5. The L3—1attice basis reduction algorithm, practice.

Below we describe the variant of the L3-a1gorithm that we use in this thesis
to solve diophantine equations. This variant has been designed to work with
integers only, so that rounding-off errors are avoided completely. In the
algorithm as stated in ZELX, Fig. 1, p. 521, non-integral rational numbers may
occur, even if the input parameters are all integers.
Let T ¢ Z" be a lattice with basis vectors hl’ e, gn . Define bj, ”ij’
di as in ZEE (1.2), (1.3), (l1.24), respectively. The di can be used as
denominators for all numbers that appear in the original algorithm (XEE, p.

523). Thus, put for all relevant indices i, j

*
c. = d ‘b, ,
= i

Lol (3.13)
A =d,-
i, 7 %573
They are integral, by ZEE (1.28), (1.29). Notice that, with Bi = |b |2 N
d, =d, ,-B, . (3.14)

We can now rewrite the algorithm in terms of S di’ Xi i
, thus eliminating all non-integral rationals. We give this variant

*
in stead of hi’

B.
1

g
of the L3—a1gorithm in Fig. 1. All the lines in this variant are evident from
applying (3.13) and (3.14) to the corresponding 1lines in the original

algorithm, except the lines (A), (B) and (C), which will be explained below.

We added a few lines to the algorithm, in order to compute the matrix of the
transformation from the initial to the reduced basis. Let B8 be the matrix

with column vectors hl’ e, bn , the initial basis of the lattice T
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Figure 1. Variant of the L3—algorithm.

dO =1 ;
¢, =Db. ;
i i
Ay = (bye)
+J J for j=1,...,i-1 ; } for i=1,...,n ;
a) ey = (dyrey=dy yred/dy
d; 1= (gg,e50/dy
k = 2 ;
(1) perform (*) for { = k-1 ;
: 2 2 .
if A-dk_z»dk < 3~dk_ - A'Ak,k—l go to (2) ;
perform (*) for ¢ =%k-2, ..., 1 ;
if k = n terminate ;
k = k+tl ; go to (1) ;
by by
(2) b i ;
“k “k-1
V'T YT
— _ ’ YT - IT ’
uk el Kk k-1
A . A,
i_l’J = 3 k.3 for j =1, , k-2 ;
k,j k-1,]
A A
i, k-1 k,k-1 -2
(B) ’ & R + AL ) /
Ai,k } i k-1 dk ik _Ak,k—l dk—l
for 1 = k+l, , g
2
© O e I S R S R
if k> 2 then k := k-1 ;
go to (1) ;
(*) if 2'|Ak’t| > dﬁ then
r := integer nearest to Ak,L/d ;
. - . . P - . . IT = IT . IT
b :=b -rb; u =y -ru; ¥ vgo try
Ak,j = Ak,j - r-XL’j for j =1, , -1 ;
Ak,L 1= Ak,L r~dL .
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which is the input for the algorithm. We say: 38 1is the matrix associated to

the basis hl’ e, hn . Let € be the matrix associated to the reduced

basis €1s e & which the algorithm delivers as output. Then we define

this transformation matrix V by
t =87

More generally, let U be the matrix of a transformation from some 30 to

B, so B =28 -U . Denote the column vectors of % by u and the

0

20

10

row vectors of ﬂ—l by yiT, R yﬁT . We feed the algorithm with U and
U also. All manipulations in the algorithm done on the hi are also domne
on the u, and the ! are adjusted accordingly. This does not affect the

computation time seriously. The algorithm now gives as output matrices U ,
1

U4 and U’ ~ , such that & 1is associated to a reduced basis, € = 8-V ,
and U’ = U-¥ . Note that ¥ is not computed explicitly, unless U =3 (the
unit matrix), in which case U' =¥ . It follows that
-1
=849 U =28_-1U ,
0
so U’ 1is the matrix of the transformation from 8 to € . Note that if

0

-1 S -1
BO is known, then it is not much extra effort to compute ¥ as well.

We now explain why lines (A), (B) and (C) are correct.

(A): From EEE (1.2) it follows that

i-1 di—l
€ = di1hy - kglaijzfai'*i,k'gk :
Define for j =0, 1, , i-1
. 1 dj
Qi(J) = dj‘hi - kzlaijzfa;'ki’k'gk .
Then gi(O) = hi , and gi(i—l) =<, - The gi(j) is exactly the vector

computed in (A) at the j th step, since

dj-gi(j-l) - Xiyj-gj

j-1  d, a,

] ] ;
b, - Y ——a—x, e - oA g, = c.
j i kzldk—l'dk i,k 7k dj—l.dj i,j &J —1(J>

This explains the recursive formula in line (A). It remains to show that the
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occurring vectors gi(j) are integral. This follows from

% —L % ;
d, - ‘X, ¢, = d.- B. b,
I ali9r e bR TR T o Lk Tk

which is integral by ELZ p. 523, £. 11.

(B), (C): Notice that the third and fourth line, starting from label (2), in
the original algorithm, are independent of the first, second and fifth line.
Thus a permutation of these lines is allowed. We rewrite the first, second
and fifth line as follows, where we indicate variables that have been changed

with a prime sign.

' - 2 . .
Bly = Bty 1B (3.15)
B/ i= B -B /Bl | ; (3.16)
Pl FT Poke1 BB (3.17)
BLkel 7 Mokel Paeel OB e e Pk (3.18)
Pl TRkl T MRok-1 Pk (3-19)
where (3.18) and (3.19) hold for i = k+1, ..., n . The di remain unchanged
for i =0, 1, ..., k-2 , and by (3.16) also for i = k . Now, (3.15) is
equivalent to
' Az
Y1 % Mkl %
dk = dk + 5 © g R (3.20)
-2 -1 dk—l k-2

which explains (C). From (3.17) we find

Mok-1 - kel %1 %2

1 Y1 Yo Y]

hence remains unchanged. From (3.18) we obtain

Me k-1

Mol Mkl Mokl [ Lo ek Mok J ik
hee1 %1 %k G %
whence, by multiplying by dk—l'dﬁ—l and using (3.20),

Ak

' = . .d’ 2 .
B 1M kel T Mokl Mok-1l T O %e1 % T M k-1 )

P
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Finally, from (3.19) we see

Mr Mokl Mk

G ke B K

and (B) follows.

In our applications we often have a lattice T , of which a basis is given

such that the associated matrix, ¢ say, has the special form

6 ... 6, 16 |

where the ei are large integers, that may have several hundreds of decimal
digits. We can compute a reduced basis of this lattice directly, using the
matrix o itself as input for the L3—algorithm, But it may save time and
space to split up the computation into several steps with increasing

accuracy, as follows.

Let k Dbe a natural number (the number of steps), and let { be a natural
number such that the ei have about k-£ (decimal) digits. For

i=1, ..., n and j =1, ..., k put

) _ £ (el
o)) - (e;/10 .

and define

(3>
Wi by

oD _ 1obed) 4 (D)
i i i
Thus, the WgJ) are blocks of ¢ consecutive digits of Gi . Define for the

relevant j the n X n matrices

1
]
a3
4 = D. = ,
J ¢¢ 1. . ' J .
&R g(d) g (3 <3
1 n-1 n n
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Then it follows at once that

o, =B84, + 0,
j+l ] ]

Notice that ﬂk =d , since Sik) = ei . Put %, =93 , B8 =4 . For some

0 1 1

be known matrices. Then we apply the L -algorithm

j =21 let 8, and 4.
J b j-1

to 8 =8_ , )
J

-1 and ﬂ_l . We thus find matrices Gj ﬂj and
ﬂj_l such that

Now put

B, -850, + D, U,
jn NN BN
By induction Bj , Cj and ﬂj are defined for j =1, ., k . Note that

-1 1

B, -U.T =B-B_-U . + D

J+L ] j i ]
so the 3.-ﬂ5}1 satisfy the same recursive relation as the ﬂj . Since

-1 -1
. - 4 _— -

Bl MO dl , we have $j j-1 3 for all j Hence

” -1

C. =8,.-%, "%, =4 -U ,

J Ji-1 73 i
and it follows that Ck and ﬂk are associated to bases of the same
lattice, which is T . Moreover, since € is output of the L3—algorithm, it

k

is associated to a reduced basis of T .

Let us now analyse the computation time. For a matrix M we denote by L(AM)
the maximal number of (decimal) digits of its entries. If the L3—algorithm is
applied to a matrix 8 , with as output a matrix &€ , then according to the
experiences of Lenstra, Odlyzko (cf. Lenstra [1984], p- 7) and ourselves, the
computation time is proportional to L(B)3 in practice. Since € is

associated to a reduced basis, we assume that

L) = 1Olog(det )/n .

4

In our situation, L(dj) = {3, L(Dj) £ , and since det Cj = det 4, =
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D) o, ‘ PRE) D
Gn , we have L(Gj) = {.j/n . Put Gj = (Ci,h) , ﬂj = (ui,h) . then by
. = o, -U, and the special shape of o, we have CSJ) = ugJ) for
J J ] ]J i,h i,h
i=1, ..., n-1 and h=1, ..., n, and
(3 _ (3) 5 _ Gy g P (3>
R G e RN St AL J M A A

It follows that L(ﬂj) = L(Cj) . So

L(8;) = max ( LE-C, )y L0y 4 U ) )=t + 2 (G-1/n .

Instead of applying the L3—algorithm once with 4 as input, we apply it k

times, with 8 B as input. Thus we reduce the computation time by a

1o B
factor
Lest) > B t-x)° B Kon
k Tk k-1
3 3 j-14 3 .3
Y L) v (1) Y (n+))
S j=0

2

For k between 2.5-n and 3-n this expression is maximal, about 0.4'n

So the reduction in computation time is considerable (a factor 10 already for
n = 5 ). The storage space that is required is also reduced, since the
largest numbers that appear in the input have L-(l+(k—1)/n] instead of {-k

digits.

3.6. Finding all short lattice points: the Fincke and Pohst aigorithm.

Sometimes it is not sufficient to have a lower bound for £(T') or {&(T,y)
only. It may be useful to know exactly all vectors x € I' such that |[x]| = ¢C
or |x-y| = C for a given constant C . There exists an efficient algorithm
for finding all solutions to these problems. This algorithm was devised by
Fincke and Pohst [1985]}, cf. their (2.8) and (2.12). We give a description of

this algorithm below.

The input of the algorithm is a matrix 8 , whose column vectors span the
lattice I , and a constant C > 0 . The output is a list of all lattice
points x € T with |[x| < C , apart from x = 0 . We give the algorithm in
Figure 2. We use the notation X = (xij) for matrices X =4, 8, R, ¥, U,
and -9 for the column vectors of X .

The algorithm can also be used for finding all vectors x € I' of which the
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Figure 2. The Fincke and Pohst Algorithm.

4 = BT~$ ;
qlJ 1= 1] for 1 <i=<j=<n;
qu = qij , qij i= qij/qii for 1 <i<j=<n;
Qg = g 7 Y1942 for itl <k =<{=<n for 1
Iy oiT /qii for 1 <i=<n;
r., :=r,.-q.. , r.. =0 for 1 <j<i=<n,;

ij ii *ij ji

-1
compute R ;
compute a row-reduced version f_l of Rwl , and U, U
that # 1 - v t.gl
compute ¥ = R-U ;
determine a permutation =« such that |§ﬂ(1)| -
let ' be the matrix with columns s -1
T © (1)

4 =P
qlJ = 25 for 1 <=1i=<j=<n;
qji = qij s qij = qi‘/qil for 1 <1i<j=<n
EIs Qg ~ 91 94 for i+l <k =<{f<n for 1<
i t=mn;
T, :=C ;

i
U, =0 ;

i

(L) z = /(T /454 5
UB(x,) := lz-u,] s
X, = [—Z—U11 -1 ;
(2) Xy o= Xy + 1 ;

if Xg < UB(xi) , go to (4) ;
(3) 1 :=1+1;

go to (2) ;
(4) if i =1, go to (5) ;
i =1i-1;
m
U, := ) q.."X. ;
* j=i+1 3 ”
Ty = Tien 7 %441, 501 Byt
go to (1) ;
(5) 1if X, = 0 for 1 <1i=<n, terminate ;
compute and print x = U-(x -1 v X g )T ;
(L) © " (n)

go to (2).
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distance to a given non-lattice point y 1is at most a given constant C

Namely, let

<
I
[N aek=]
n
I

and let T be the integer nearest to S5 for all i . Put

IN
il
[Raek=]
a1
1o

Then |y-z| < C’' for some constant C' (¢ = g-Z|hi| will do). Since
z € T it suffices to search for all lattice points u with ju] < C + C' ,

and compute for each such u also x =2z + u , since |[x-y] < C implies

|lu] = |x-y| + [y-z| = C + C'

3.7. Homogeneous multi-dimensional approximation in the real case: real

approximation lattices.

let the linear form A have the form

n
A= .Z X ﬁi
i=1
We assume that n = 2 . The case n = 2 has already been discussed in
Section 3.2, but the method of this section works also for n = 2 . In fact,

it is in this case essentially the same method.

n
0
Let v € N be a constant (we will explain its use later). We define the

Let C be a large enough integer, that is of the order of magnitude of X

approximation lattice T by giving the matrix

¥
]
B
& )
i
[y €91 ... [yCo 41 [y Co ]
of which the column vectors hl’ e, hn are a basis of the lattice. Then T
is a sublattice of Z° of determinant 7n_1‘[7-C-6n] , which is of size C

A lattice point x has the form
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where the x; are integers, and

>0
[}
[ asfe]

X, [y-C9.]

i=1

Clearly, A is close to ~-C-A . The length of the vector x now measures
both X and |A] , which are exactly the two numbers we want to balance

0
with each other. We express this in the following lemma.

LEMMA 3.7. Let X1 be a positive number such that

6 = /(D) (1) 47) X, (3.21)
Then (3.1) has no solutions with

l-log(7~C-c/X )y = X <X (3.22)

) 17 - -7 ’
Remark. We apply this lemma for X1 = XO . If condition (3.21) then fails,
we must take a larger constant C . If it holds for a constant C of the
size Xg , then (3.22) yields a reduced lower bound for X of size log XO
Proof. Let Xpy s X be a solution of (3.1) with 0 < X < Xl . Consider
the lattice point

o ~ T
X = z x;cboo= (yexg o vx g A

i=1

with A as above. Then

n-1
|2S|2 = 72- Y <24 R < (n—l)-72»X2 + 52 7
. 1 1
i=1
and
[A-y-Conl = ) dxg ) Hv-Cogl=y-Cooyl = 4 Ixgl (3.23)
i=1 i=1

which is at most n-Xl . By (3.1), (3.21) and the definition of {(TI') we

have

y¥-C-c-exp(=§-X) > |7-C-A| = [A| = |A-y-C-A]
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> /(U0 (1) 7" x]) - nx 2 X

and (3.22) follows at once. 0O

Condition (3.21) can be checked by computing a reduced basis of the lattice
' by the L3—a1gorithm, and applying Lemma 3.4. The parameter vy 1is used to

keep the "rounding-off error"
[{y-Co;]-7-C-0 ]

relatively small. This is of importance only if C is not very large,
usually only if one wants to make a further reduction step after the first

step has already been made. For large C , simply take «y =1

It may be necessary, if C 1is not very large, to use a more refined method
of reducing the upper bound. To do so, we use the following lemma, which is a
slight refinement of Lemma 3.7, together with the algorithm of Fincke and
Pohst (cf. Section 3.6). It is particularly useful in the situation that one

has different upper bounds for the |xi| for different i

LEMMA 3.8. Suppose that for a solution of (3.1)

n
1Al > Ixgl (3.24)
i=1
holds. Then
1 . n
X < g-log[7~c-c/[]A|— ). |xi|j . (3.25)
i=1

Proof. Define the lattice point x as in the proof of Lemma 3.7. By (3.23)

and (3.24)

n
1Al = (1A)= X Ix;1)/v-C >0
i

The result follows at once by (3.1). O

We proceed as follows. Choose a constant CO such that if |K| > CO then

the upper bounds for ]xil imply (3.24). In that case we have a new upper

bound for X from (3.25). In case |A| < C, we have an upper bound for the

0
length of the vector x . We compute all lattice points satisfying this bound
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by the algorithm of Fincke and Pohst, and check them for (3.1).

Summarizing, the reduction method presented above is based on the fact that a
large solution of (3.1) corresponds to an extremely short vector in an
appropriate approximation lattice. Since we can actually prove by
computations that such short vectors do not exist, it follows that such large
solutions do not exist. We will apply the above described techniques in

Chapter 5.

3.8. Inhomogeneous multi-dimensional approximation in the real case: an

alternative for the generalized Davenport lemma.

Let A be the most general linear form that we study, viz.

where n = 2 (the case n = 2 has been dealt with in Section 3.3, but can
be incorporated here also). To deal with this inhomogeneous case, two methods
are available. The first method is a generalization of the method of
Davenport that we discussed in Section 3.3. The second method is closer to

the homogeneous case of the previous section.

First we explain briefly the generalized Davenport method. See Ellison

[1971a] {(where only the case n = 3 1is treated). Put
y

61 = 61/6n for i=1, ..., n-1 , B' = ﬂ/@n ,
n-1
[ = £ 9!
A A/S = B+ .2 X O+ x
i=1
. . . , , .
Let (pl,...,pn_l,q)n_?e a simultaneous approximation to ﬁl, RN 6n—1 with
q of the size of XO , such that, for i=1, ..., n-1 ,

1+1/(n-1
|9:-p, /al < e’ /q T/ (7D

'

for a small constant c¢

LEMMA 3.9. (Davenport, Ellison). Suppose that

la-8'| > 2-(n—1)-x0.cr/q1/(n—1)
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Then the solutions of (3.1), (3.2) satisfy

1

X < g-log[q1+l/(n_l)-

c/[ﬁn[~c’~(n—1)~XO)

Proof. The result follows at once from

n-1
laws'l < larars X %y (pymarop | <

q~|6n|—l-c-exp(—5-X) + (r1—1)~X0~c'/ql/(n_1>

To apply this generalized Davenport method in practice, it is necessary to

compute the simultaneous approximations (pl,.‘.,pn_l,q) . We indicated in

Section 1.4 how this can be done with the L3—a1gorithm. As lattice we take

the one associated to the following matrix:

1
, ]
[C-?l] -G . ’
: & .
.' -_—
[C ﬁn—l] C
where C 1is a constant of size XS . Then (S the first basis vector of a
reduced basis, will have length of the size of C(n—l)/n = Xg_l . But (<8}
can be written as
¢, = (q, a-[c-®]]-C-p q-[c-o’ 1-C.p_; )T
=1 ! 1 1 " n-1 n-1
for some Pys ---s Phq 4 - It can be expected that q 1is of size Xg_l ,
and
O fS - [~ S{C-9'1=-C-
q-C-{oi-p,/al = |q-{C-91]-Cop,|
: n-1 . n-1 n-1
are of the size XO , so that Iﬂi—pi/ql are of the size XO /C-X0 =
C_l = X" = q—(1+1/(n—1)) as desired.

0

The above method has been applied in practice to solve Thue and Thue-Mahler
equations by Agrawal, Coates, Hunt and van der Poorten [1980] (using multi-
dimensional continued fractions 1instead of the L3~algorithm), Pethé and
Schulenberg [1987], and Blass, Glass, Meronk and Steiner [19878], [1987b]. So
it has proved to be useful. However, we prefer another method, for several
reasons. Firstly, it is close to the homogeneous case as described in the

previous section, whereas the generalized Davenport method has no obvious
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counterpart for the homogeneous case. Secondly, it actually produces
solutions for which the linear form A 1is almost as near to zero as possible
under the condition X < Xy - Thirdly, an analogous method for the p-adic
case can be given (see Section 3.11). Finally, if a linear relation between
the 61 exists, but had not been noticed before (a situation that sometimes
occurs when one solves e.g. Thue equations), the method detects these
relations, by finding explicitly an extremely short lattice vector giving the

coefficients of the relation. Concerning computation time we think that the

two methods are about equally fast.

The method works as follows. We take the approximation lattice T exactly as
in the homogeneous case, cf. the previous section, with constants v, C
chosen properly, i.e. C 1is of the size Xg . Compute with the La—algorithm
a reduced basis L A - of I' . Let € be the matrix associated to
this basis, and compute also the transformation matrix Y% with € = 8-U, and
its inverse ﬂ_l . Note that B_l , and hence also C_l , are easy to

compute, namely by

1/ - &
37t - 2 1/v
ylyCo by v Co ] [y GO ]

and the L3—a1gorithm. Let y € Z" be defined by

T n
y= (0, .., 0, =(v:CBl) = Tsiey,

i=1

where the coefficients s; € R can be computed by

T -1
(sl,. ..,er =0 -y .
. . -1 -1
To be more precise, if U has u as n th column, then ¥ has
u/[y:C¢-9_ ] as n th column, so
(s s )7 = —ulyCpl/lrCoo ]
177 T = n

Now we apply Lemma 3.5 or 3.6, that provide a lower bound for {(T,y) . Then

we can apply the following lemma.
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X

Let 1

LEMMA 3.10.
2 2
UT,y) = ¥/ ((n+2) +(n-1)y )-xl

Then (3.1) has no solutions with

1
3-1og(7-c-c/x1) < X =< X1

be a positive constant such that

(3.26)

(3.27)

Remark. We apply this lemma for X1 = XO If condition (3.26) then fails,
we musc take a larger constant C If it holds for a constant C of the
size Xg , then (3.27) yields a reduced lower bound for X of size log X0
Proof. Let Xy, , X be a solution of (3.1) with 0 < X < X1 Consider
the lattice point
o N
x = Y x;bo= (rxg, crx e By )
i=1
with
_ n
Ry = X x;-[y-C-9y)
i=1
Put A = [y:-C-B] + KO Then
n-1
|X—X|2 = 72- z x? + KZ < (n—1)~72-X2 + Xz ,
. i 1
i=1
and
- n
|A=y-C-Al = |[y-C-Bl=7y-C-Bl + Y Ix;1-1[7:C9;]-7-C-0,]
i=1
n
<1+ 'X x| =< 1 + nX, < (n+1)~X1
i=1
By (3.1), (3.26) and the definition of {£(I',y) the result follows, since
v-C-c-exp(~6-X) > |y-C-Al = |A| — |A=y-C-A|
> /(L(F 1)2—(n—1)~72~X2) - (n+1)-X, = X u]
- ’ 1 171

Again we may prove refinements of the above lemma,

the homogeneous case. We explained in Section 3.5.
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and Pohst algorithm in the inhomogeneous case. We do not work that out here.

Summarizing, the method described above is based on the fact that a large
solution of (3.1) in the inhomogeneous case leads to a lattice point
extremely near to a fixed point in 7" . We can actually prove by some
computations that such lattice points do not exist, so that such extreme
solutions do not exist. The method outlined in this section is wused in
Chapter 8. Note that in the case n = 2 the method is essentially the same

as the Davenport lemma.

3.9. Inhomogeneous zero-dimensional approximation in the p-adic case.

In the p-adic case we start with a very simple linear form A , to which also

a very simple reduction method applies. Let A be
A=B8+x9,

for B, 0 € such that /9 € ®p ,and x € Z , x>0 . It is obvious
that in the real case with such a simple linear form A inequality (3.1) has
only finitely many solutions (we even don't need (3.2)), and that they are
easy to compute. In the p-adic case however, inequality (3.3) may have

infinitely many solutions, so we do need a bound like (3.4), and a reduction

method.
Put 8’ = -B/8 . Then O’ € ®p . Inequality (3.3) now becomes
‘ - ot .
ordp(ﬁ X) = ¢y + Cyr X, (3.28)
where ¢ c are constants with ¢, > 0 . We assume that

1’ "2 2
X = —ci/cz

Then (3.28) has no solutions if ordp(ﬁ’) < 0 . Hence we may assume that '

is a p-adic integer. Let the p-adic expansion of 9’ be

where u; € { 0,1, ..., p-1 } for all 1i e NO . Compute the p-adic digits

ug far enough to be able to apply the following reduction lemma.
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LEMMA 3.11. Let X1 be a positive constant. Let r be the minimal index

such that
r
p >X,, u_ =0 (3.29)
Then (3.28) has no solutions with

(r—ci)/c2 <x =X (3.30)

1

Remark., We apply the lemma with X1 = X0 . The assumption behind the lemma
is that in the p-adic expansion of #' no long sequences of zeroes appear.
In fact, it seems that in our applications the numbers u, are distributed
randomly over ( O, 1, ..., p-1 } . Then the minimal r satisfying (3.29)
will not be much larger than log Xo/log p , and then (3.30) yields a reduced

as desired.

upper bound of size log XO ,

Proof. Let x

IA

X1 satisfy (3.28). Suppose that ordp(@’—x) >r + 1 . Then

u'_pl (mod pr+1)
Ol

»
i
I 1R

i

By x > 0 it follows from (3.29) that

r .
x> yu ~pl > ur~pr > pr > Xl ,

which contradicts the assumption x =< Xl . Hence ordp(ﬂ'—x) < r , and (3.30)

follows from (3.28). =]
Remark. In the above proof it is essential that x 2= 0 . It is however not
difficult to formulate a similar result that holds for all =x € Z , by

looking, if p » 2 for p-adic digits Uy that are not only »= 0 but also
» p—-1 , and if p = 2 for p-adic digits ug with u; Eug
A method very similar to the one described above was used by Wagstaff [1979],
[1981] for solving congruences such as 5" = 2 (mod 3n) . We apply the method

in Chapter 4.
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3.10. Homogeneous one-dimensional approximation in the p-adic case: p-adic

continued fractions and approximation lattices of p-adic numbers.

Let A have the form

A= X9+ %, 8,

where 61, ﬁz € Op such that ¢ = -61/62 [S @p , and x X, € Z . We may

assume that ordp(ﬁ) > 0 . Now

A = A/191 = - xl-ﬂ + X,

So (3.3) now means that the rational number XZ/Xl is p-adically close to

the p-adic number ¢

In analogy of the real case it seems reasonable to study p-adic continued
fraction algorithms. However, a p-adic continued fraction algorithm that
provides all best approximations to a p-adic number seems not to exist.
Therefore we introduce the concept of p-adic approximation lattices, as was
done in de Weger {1986a]. From this paper we adopt the best approximation
algorithm, which is a generalization of the algorithm of Mahler [1961],
Chapter IV. This algorithm goes back also on the euclidean algorithm, and
thus is close to a continued fraction algorithm. But it is not a p-adic
continued fraction algorithm in the sense that a p-adic number is expanded
into a continued fraction, and that the approximations are then found by
truncating the continued fraction.

19(u)

Recall that for U € NO the rational integer is defined by

0 the p-adic
approximation lattice Fp by a matrix to which a basis of F# is

ordp(ﬁ—ﬂ(“)) 2 p and 0 < 6(y) < pp . We define for any u € N

associated, namely the matrix

1 0

s o*

Then it is easy to see that

T _ 2
r,o=t (x.x) €77 | ord (x,-x

9) =
u ) = u )

1

(cf. Lemma 3.13 in the next section, where we prove a more general result).

The following algorithm computes the point of minimal length in F#
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Figure 3. p-adic approximation algorithm.

X = (1,6(”)JT ;Y = [O,pu)T ;
if }x| > ty]| , interchange x and y ;
(1) compute K € Z such that |y-K-x| 1is minimal ;
Yy i=y-Kx;
if }x| > {y| ., interchange x and y , and go to (1) ;

print x .

With this algorithm it is possible to compute L(P#) explicitly. Then we can

apply the following lemma.

LEMMA 3.12. Let X1 be a constant such that

L(F#) > ,/2~xl . (3.31)

Then (3.3) has no solutions with

(y—l—cl+ordp(62)J/cz <x; SXSXK L (3.32)

Remark. We take pu such that p“ is of the size of Xg , and apply the

lemma for X1 = XO . Then we expect that i(P#) is of the size of XO , SO

that (3.31) is a reasonable condition.

Proof. Apply the proof of Lemma 3.14 (in the next section) for n = 2 . ]
The above method has been applied by Agrawal, Coates, Hunt and van der
Poorten [1980]. We use it in Chapters 6 and 7.

3.11. Homogeneous multi-dimensional approximation in the p-adic case: p-adic

approximation lattices.

We now study the case

where 9, € QO such that d./8. e @, x, € Z for all i, j , and with
i P i773 P i

n = 2 . We may assume that ordp(ﬁi) is minimal for i =n . Put
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8 = -9./9 for i =1, ...,
1 1" n

Then ﬁi e Zp for all i . Put
n-1
A= N/D = —izlxi-ﬂi +x

The definition of the p-adic

directly from the one-dimensional case. Namely, for any

F” as the lattice associated to the matrix

L ‘ @ 1
& .
7
13,(;1) ) 19,(u) o*

1 o n-1

Then we have the following result.

LEMMA 3.13. The lattice F# s

is equal to the set

approximation lattices

can be generalized

p e N we define

0

associated to the above defined matrix B# ,

T n ,
r, =t (eooo0x ) €7 ord (A') = 4 )
Proof. For any X = [x X ]T € ' there exists a z = [z z ]T e 1"
Proof. X 10 %y u z 10 0%
such that x = Bu-g Then X, =z for i =1, ., n-1 , and
not (w) w_ o I
x = .Z zi-ﬁi +tz opho= .Z xi-ﬁ'i (mod p")
i=1 i=1
Hence ordp(A’) > u Conversely, for any x = (Xl,...,xn]T such that
ordp(A') > pu there obviously exists a 2z € 7" such that X = $#'g . ]

Using the L3—algorithm we can compute a lower bound for L(Fu)

Then we can

apply the following lemma, which is a direct generalization of Lemma 3.12.

LEMMA 3.14. Let X

1
L(r#) > /n-x1

Then (3.3) has no solutions with
[p—l-cl+ordp(ﬂn))/c2 < Xj <X < Xl
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Remark. We take u such that p# is of the size of Xg , and apply the
lemma for X1 = XO . Then we expect that L(F“) is of the size of XO , SO
that (3.33) is a reasonable condition.

Proof. Let Xys oo X be a solution of (3.3) with X < X1 Then (3.33)
prohibits the point [xl,...,xn]T from being a lattice point in F“ . Hence,
by Lemma 3.13, ordp(A') < u-1 , and (3.34) follows from (3.3). [m}
We will apply the results of this section in Chapters 6 and 7.

3.12. Inhomogeneous one- and multi-dimensional approximation in the p-adic

case.

Finally we study an inhomogeneous p-adic form

where 8, ﬁi € Qp such that ﬂ/ﬁj, 6i/ﬁj [S @p and x; € Z for all 1, j ,
and n > 2 . We assume that ordp(ﬁi) is minimal for i = n , and that

ordp(ﬂ) > ordp(@n) . Put

ﬁi = -ﬁi/ﬁn for i=1, ..., n-1, B = B/ﬁn s
n-1
A = A/19n =B - izlxilﬁi + X

Then g', ﬁi € Zp for all i . As p-adic approximation lattices we take the
lattices Fﬂ that were defined for the homogeneous case, i.e. for any
p el the lattice F# that is associated to the matrix 3# (see Section

0
3.11). Put further

(B) NT o n
x=(0, ..., 0, ¥ ) = Vs coe",
. i =i
i=1
where c¢., ..., ¢ is a reduced basis of I' , and s, € R . By Lemma 3.5 or
1 -n " i
3.6 we can compute a lower bound for 4£(I',y) . This is useful in view of the

following lemma.
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LEMMA 3.15. The set F“(y) = F# +y is equal to the set

T n ,

L, = (xy....x ) e | ord (A') = 4 |

Proof Let x = (x x )T satisfy x -y erT Note that
. X 17Xy X u
- ) T

X -y = [ Xl’ e, xn—l‘ xn—ﬂ ] .

By Lemma 3.13 we have
n-l (1) b

ordp[izlxi-ﬁi—(xn—ﬂ )) = pt .
The left hand side is just ordp(A') , which proves the lemma. a
Obviously, the 1length of the shortest vector in Fu(y) (a translated

lattice) is equal to L(F#,y) (unless in the case y € F” ). We have the

following useful lemma.

LEMMA 3.16. Let Xl be a constant such that

©r .y > /neX) (3.35)

Then (3.3) has nc solutions with

(-1— B

(v-1 c1+ordp(19n)J/c2 < xj < X < X1 . (3.36)
Remark. We take u such that p” is of the size of Xg , and apply the
lemma for Xo = Xl . Then we expect that C(F#,y) is of the size of X0 , SO

that (3.35) is a reasonable condition.

Proof. Let Xys o oees X be a solution of (3.3) with X < X1 Then (3.35)
prohibits the point (xl,...,anT from being in F#(y) . Hence, by Lemma
3.15, ordp(A') < pu-1 , and (3.36) follows from (3.3). m}

We shall not apply the above lemma in this thesis, so we have included it
here only for the sake of completeness. However, when solving Thue-Mahler

equations (see Section 8.6), it will be of use.
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3.13. Useful sublattices of p-adic approximation lattices.

In our p-adic applications of solving diophantine equations via linear forms,

we always have linear forms in logarithms of algebraic numbers, i.e. in

the B and 6i's are p-adic logarithms of algebraic numbers, say

B = logp(ao) s 6i = logp(ai) for i =1, ..., n .

In Section 2.3 we have seen that for a £ € @p if ordp(lif) > 1/(p-1) then

ordp(logp(&)) = ordp(li&) . In our applications we apply this to

for which ordp(&—l) is large. This implies that ordp(logp(é)) is large
too, on which we based the definition of our approximation lattices. However,
the converse is not necessarily true: ordp(logp(&)) being large does not
imply that ordp(f—l) is large. This is due to the fact that the p-adic
logarithm is a multi-branched function. To be more precise, for any rcot of
unity ¢ € @p we have logp(g) = 0 (cf. Section 2.3). In @p there exist
only the (p-1) th roots of unity if p 1is odd, and only +1 as roots of
unity if p =2 . Let ¢ be a primitive (p-1) th root of unity if p is
odd, and ¢ = -1 if p = 2 . It follows that ordp(logp(g)) being large
implies that for some ke { 0, 1, ..., p-2 ) (or ke {0, 1} if p=2)
ord_(log_(£)) = ord_(£-¢)
p P p

It turns out that the set of I ERREY X such ihat ord (£-1) (or
ordp(fil) if one wishes) is large, is a sublattice Fﬂ (or F# ) of F”

In the following lemma we shall prove this fact, and indicate how a basis of
this sublattice can be found. Then we can work with this sublattice instead
of Fp itself. Of course, in Lemmas 3.12, 3.14 and 3.16 we can replace F#

*
by these sublattices T , F: . For simplicity we assume that a; € @p for

all 1 . We take ay = 1 , and leave it to the reader to define appropriate
*
translated lattices F#(y), Ft(x) for the case a = 1
LEMMA 3.17. Let ay, e € @p be given numbers with ordp(ai) =0 for
all i , and ord (log (a.,)) minimal for i =n . Let x,, ..., X € Z . Put
P P 1 1 n
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n
£ = E a.l s B T ordp(logp(an))

Put for any u € N

n
= £
F# Cxppex) e | ordp(logp(>)) Z ot opg )
r 7" d (e+1) = p +
u t(xg- -,Xn) € | or p(ﬁ— )zt ),
# n
F# = { (xl,...,xn) e Z | ordp(ﬁ—l) > u + Ko }
*
Then Pi C F# c F# are lattices. If p = 2 they are all equal. If p =3
then F: =T Let further p = 3 . Let bl’ e, hn be a basis of F#
. T _
Define k(x) for any x = [xl,...,xn) € F“ by
php
£ =% (modp ), k@ € (0,1, ..., p2)
Let b!, ..., b’ be a basis of T such that
1 n n
'y =
k(b!) = ged{k(R)), ... k(b))
Put for i=1, ..., n-1 and p =5
* = k(b!)/k(b’ d (p-1)/2 *| < (p-1)/b
v; = k(ky)/k()) (mod (p- 2/2) 5 Iyl = (p-1) /4
* *
b. = b! - v.-b' ,
i i i ™n

and for p = 3 also

75 = k(b)/k(b)) (mod (p-1)) . Il = (p-1)/2
# [ # I3
b, = b - wi'hn

Further put for p = 5

2
i
o

Lem(k(b), (p-1)/2) /(b)) , b = 70

and for p = 3 also

#

lem(k(b)),p-1)/k(B)) . b =~

<
I

‘b’ .
n

#
n
* . * # # . . #
b is a basis of T' , and , ..., b is a basis of T .
n I3 1 n n

[l

*
Proof. It is trivial that FZ c Fﬂ C F“ , and that they are lattices. The

equalities of the lattices for p = 2, 3 follow from the fact that *1 are
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the only roots of unity in @p for

(mod (p-1))

characterized by

characterized by
i=1,

that for

k(b
)

#
k(b;)

*
Note that bl’

Write x €T as
"
x = Z
i=1
for i x #
or integers Yir Y5
K _ *
) =y,
_ #
k(x) =y,

*
So xe€T if
u

*
and only if T,

(p-1) | k(x)

*
k(bi) - v; k(b))

a linear function on

(p-1)/2 | k(z) .,

n-1

. Then it follows that

“k(b/) (mod (p-1)/2)

k(b)) (mod (p-1))

This proves the result.
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' # oo
k(bi) - vi k(b)) =
* , #
bn-1v By and by,
* o T a o
h RS z Yiby
i=1

* d
|y, » an

+y -

p:S

The points

#
n

€

2,

and the

It follows from the definitions in

= 0 (mod (p-1)/2)

0 (mod (p-1))

1’ ©n

b’
=n

F#
"

if and only if 7i | y#

T are
i

F# are
m

are both bases of F#

n
O



CHAPTER 4. S-INTEGRAL ELEMENTS OF BINARY RECURRENCE SEQUENCES.

Acknowledgements. The research for this chapter has been done partly in
cooperation with A. Pethé from Debrecen. The results have been published in

Pethé and de Weger {1986} and de Weger [1986b].

4.1. Introduction.

In this chapter we present a reduction algorithm for the following problem.
[eel

Let A, B, GO‘ G1 be integers, and let the recurrence sequence {Gn)n_o be
defined by
G = A-G_ - B-G for n=1, 2,
n+l n n-1
Assume that A = A2 —~ 4-B 1is not a square. Let w be a nonzero integer, and
let Pys -+ Py be distinct prime numbers. We study the diophantine
equation
s mg
G =w- H P. 4.1
n . i
i=1
in nonnegative integers n, My, .., Mmoo We will study both the cases of
positive and negative discriminant A (the 'hyperbolic’ and ‘elliptic’

cases). It was shown by Mahler [1934}] that (4.1) has only finitely many
solutions. For the case A > O Schinzel [1967] has given an effectively

computable upper bound for the solutions.

Mignotte [1984a], [l984b} indicated how in some instances (4.1) with s =1
can be solved by congruence techniques. It is however not clear that his
method will work for any equation (4.1) with s = 1 . Moreover, his method
seems not to be generalizable for s > 1 . Pethé [1985] has given a reduction
algorithm, based on the Gelfond-Baker method, to treat (4.1) in the case

A>0, w=3s5=1

Our reduction algorithms are based on a simple case of p-adic diophantine

approximation, namely the zero-dimensional case, cf. Section 3.9. In the
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hyperbolic case this suffices to be able to find all solutions of (4.1). This
is based on a trivial observation of the exponential growth of |Gn| in this
case. In the elliptic case the situation is essentially more complicated.
Then information on the growth of lGnI can be obtained from the complex
Gelfond-Baker theory. Therefore in this case we have to combine the p-adic
arguments with the one-dimensional homogeneous or inhomogeneous real

diophantine approximation method, cf. Sections 3.2 and 3.3.

We shall give explicit upper bounds for the solutions of (4.1) which are
small enough to admit the practical application of the reduction algorithms,
if the parameters of the equation are not too large. Pethd [1985] pointed out

that essentially better upper bounds hold for all but possibly one solutions.
The generalized Ramanujan-Nagell equation
s .
W= [lpt, (4.2)

Zys e z € Wo are the unknowns, can be

reduced to a finite number of equations of type (4.1) with A > 0 . Equation
(4.2) with s =1 has a long history (cf. Hasse [1966], Beukers [1981] for a

where k € Z 1is fixed, and X,

survey), and interesting applications 1in coding theory (cf. Bremner,
Calderbank, Hanlon, Morton and Wolfskill [1983], MacWilliams and Sloane
[1977}, and Tzanakis and Wolfskill [1986], [1987]). Examples of (4.2) have
been solved using the Gelfond-Baker theory by Hunt and van der Poorten
(unpublished). They used real or complex, not p-adic 1linear forms in
logarithms. As far as we know, none of the proposed methods to treat (4.2)
gives rise to an algorithm which works for arbitrary values of k and the

pi's , whereas Tzanakis’ elementary method (cf. Tzanakis [1983]) seems to be

the only one that can be generalized to s > 1 . Our method has both
properties.
This chapter 1is organized as follows. In Section 4.2 we give some

preliminaries on binary recurrence sequences. In Section 4.3 we study the
growth of ]Gn| , both in the hyperbolic and the elliptic case. The
hyperbolic case is trivial, and in the elliptic case we give a method for
solving |Gn| < v for a fixed v € N , by proving an upper bound for n
that has particularly good dependence on v , and by showing how to reduce
such an upper bound. Section 4.4 gives upper bounds for the solutions of

(4.1). Section 4.5 treats a special case: that of ’'symmetric’ recurrences.
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For this special type of recurrence sequences our reduction algorithms fail,

but elementary arguments will always work for solving (4.1) in these cases.

Section 4.6 gives a lemma on which the p-adic part of the reduction procedure
is based, and some trivial cases are excluded. In Section 4.7 we give the
algorithm for reducing upper bounds for the solutions of (4.1) in the case A
> 0 , with some elaborated examples. The same is done for the case A < 0 in
Section 4.8. Section 4.9 shows how to treat the generalized Ramanujan-Nagell
equation (4.2), as an application of the hyperbolic case of (4.1). As an
example we determine all integers x such that x2 + 7 has no prime factors
larger than 20, thus extending the result of Nagell [1948] on the equation
x2 + 7 = 2" (the original Ramanujan-Nagell equation). Finally in Section
4.10 we give an application of the elliptic case of (4.1) to a certain type

of mixed quadratic-exponential diophantine equation, analogous to the

application of the hyperbolic case to solving (4.2). As an example, we

determine the solutions X, m, my, n of
m, m m=m

2 -3t72x+2 00792 110"

4.2. Binary recurrence sequences.
. . o s

Let A, B, GO, G1 be given integers. Let the sequence (Gn)n=0 be defined
by

Gn+1 = A'Gn - B-Gn_l for n=1, 2, ... . (4.3)
Let a, B be the roots of x2 - Ax + B =0 . We assume that A = A2 - 4B

is not a square, and that «/8 1is not a root of unity (i.e. the sequence is

not degenerate). Put
A s ————0—, = (4.4)

Then X and p are conjugates in K = Q@(/A) . It is well known that for all

n=>0

Gn = A-an + u~ﬂn , (4.5)

(cf. Shorey and Tijdeman {1986], Theorem C.1). Since our aim is to solve

(4.1), we see from (4.3) that we may assume without loss of generality that
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(Gy.61) = (6),B) = (A,B) = 1

Namely, if p | (Gl,B) then p | (GI’GZ) , and 1if P | (A,B) then

P | (G2,G3) , and if p | (GnO’Gn0+1) then p | Gn for all n > no , so the
common factor p can be divided out in equation (4.1).
LEMMA 4.1. Let n, My, o, M be a solution of (4.1). Then, with the above
assumptions, we have for 1 =1, ..., s either m, = 0 or n=0 or
ord (a) = ord (B) =0 ,
Py Py (4.6)
1
ord (X)) =ord_ (p) = - =-ord (A) <O
Py Py 2 Py

Proof. Suppose P | B Then P; ! A , hence, from (4.3) and (B,Gl) =1,
Py I Grl for all n = 0 . Thus, m; = 0 or n =0 . Next suppose Py I B

Then, by a-8 =B ,

ordp'(a) + ordp.(ﬁ) = ordp.(B) =0

i i i
Now, a and B are algebraic integers, so their pi—adic orders are
nonnegative. It follows that they are zero. Put E = -X-p-A . Note that

Ee€eZ , and for all n=>=0

62 - AG G +BG=EB".
n+l n n+l n
Suppose that Py | E , then we infer that Py I Gn for all n , since

(GO,Gl) =1 . Hence m, = 0 . Next suppose 0 } E , then

ordpi(A-/A) + ordpi(u-/A) = ordpi(E) =0

Since X-YA and pu-/A are algebraic integers, the result follows. u]

From Lemma 2.1 it follows that we may assume without loss of generality that
(4.6) holds for i =1, ..., s . Of course, we may also assume that

ordp (w) =0 for i=1, ..., s . The special case s = 0 in equation (4.1)
i
is trivial if A > 0 , and will be treated in the next section for all A .
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4.3. The growth of the recurrence sequence.

First we treat the hyperbolic case A > 0 . Note that |a| = {8] , since the
sequence is not degenerate. So we may assume e} > |B| . We have the
following, almost trivial, result on the exponentiality of the growth of the

<«
sequence (Gn)n=0 . Let

[ a
n, > max (2, 1og|A|/log|ﬂ| ],

Note that vy > 0

LEMMA 4.2. Let A >0 . If n=>n, then |G| > v la|”

Proof. By (4.5), |af > |B] and ng > 0 it follows for n = ng that

-1 -n a. —-n
16 1-Jal ™ =[x (3) 701 2 2] - DRI o

We apply this to (4.1) as follows.

COROLIARY 4.3. Let A > 0 . Any solution n, My, .., W of (4.1) with

n = n satisfies

1 .
n< Yom 2P logl/lwl)
. i logja| log|a|
i=1
Proof. Clear, from Lemma 4.2 and (4.1). jm}

Next we study the elliptic case A < 0 . Since a/f 1is not a root of unity,

B> 2 . Since (a,8) and (X,u) are pairs of complex conjugates, |a| = |B]
and [A] = |g| . Let v eR , v =1 be given. We study the diophantine
inequality

|Gn[ <v . 4.7)

We apply a result of Waldschmidt (see Section 2.3) from the complex theory of
linear forms in logarithms, which gives an upper bound for =n  that is

particularly good in v . See also Kiss {1979]. Let
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E=-X-p-A,

1 1

U2 = 5 -max (n, log B ) , U3 = ;~max (m, log E ) ,

+ . +
U2 = min ( U2, U3 ), U3 = max ( U2, U3 )

C, =3 362x1021~U ‘U, -log(2- -U+) C, = log(4- -U+)

1 2 73 0BT ) by = R0BRA e,

Cy = { log(n/2-|nl) + C,-C, + C,-log(4-C,/log B) ) -4/log B .

THEGREM 4.4, Let v ek , v=2=1. All solutions n =0 of (4.7) satisfy

4
n < C3 + ng—ﬁ-log max [ v, 2~[G0~p~/A| ) .

Remark. Note that C, does not depend on v .

b

The following corollary of Theorem 4.4 is immediate.

COROLIARY 4.5. Let A < 0 . Any solution n, My, .o, MW of (4.1) satisfies
4 S

n < C3 + Igg—g-max ( 1og(2»|GO~u-/A|), log|w| + iglmi-log P ) .

Proof (of Theorem 4.4). Note that |a] = || = VB = y2 . We have from (4.7)
-] ()" v _-n/2
— =1 -1 < —-B . 4.8

GV - = @)

We may assume n 2= 2 . Let -A/u = e2"1'¢ , a/f = eZWl.w , with - % <Y < %
1 1 . 1

and - PR AT Let ko, kl € Z be such that | j-¥ + n-¢ + kj | = 3
Then k| <1+ %-n <n for j =0, 1. Put

A, = 2ni-[ jyp +ne + k., ] = j-Log[zg] + n<Log[E] + 2-k,-Log(-1)

J ] I B J
for j =0, 1 . By Lemma 2.3 and (4.8) we have an upper bound for |A1|

L 2ni-(¢+n~¢+k1)
|A1| =2n-| ¥ + np + k1 | = ;ﬁ'le -1]
n
- 1,,.‘ [—_AJ[E] -1 ‘ <1, v gn/2
2 ul B 2 |pl

It may happen that A, = . In that case, Y + n¢g € Z , hence

1

79



-(A/u)-(a/B)™ =1 , and it follows that c = Ao+ pp = 0 . Kiss [1979]
showed that this implies [Rn] < 2~|G0| , where Rn = (an—ﬂn)/(a—ﬂ) . From
this, Kiss derived an upper bound for n . We shall follow his argument, but
we apply another, sharper result from the Gelfond-Baker theory than Kiss did.

Note that, by |8| = /B ,

Bn/2 o ? Bn/2 2 Bn/2
21601 = 1801 = | (3] 2| = Jrapteenng) - 25 ing
Now A0 # 0 , since by n = 2 the contrary would imply ¢ € @ , which is

impossible, since /B 1is not a root of unity. Thus, take j=1 if Al = 0

and j = 0 otherwise. Then Aj = 0 , and

n -n/2
A, | € 5—— max v, 2-|G.-u-Y|A ‘B . 4.9
1851 = 7 ( 1Gy 1141 ) (4.9)
From Lemma 2.4 we can derive a lower bound for IAjl . Note that
max(j,n,2|kj|) = 2-n, so that W = log(2-n) . We choose V1 = % . The number

z = a/f satisfies
B-z2 - (AZ—Z-B)~Z + B =20,

hence h(e/B8) < %-1og B . And z = -X/p satisfies
E-z2 - (2-E+A-Gg)~z +E=0,

hence h(-)/u) =< %'1og E . Thus V2 = U2 , VvV, = U’ satisfy the requirements

for Lemma 2.4. We find
|a;] > exp (=€, ( log(2:n) + log(2~e~U;) ) )
j (4.10)
= exp [ —Cl~( log n + 02 ) ]

Combining (4.9) and (4.10) we find n < a + b-log n , where

2 n
a = TEE_E'[log max ( v, 2~|G0-p-/A| ] + logﬁTT;T + Cl-C2 J s

b

2~Cl/log B
The result now follows from Lemma 2.1, since

21'max(w,log B)

b = 2:C;/log B = 1.681x10 Tog B

-max(n,log E)-log(2~e~U;)

which is certainly larger than e2 . u|

We now want to reduce the bound found in Theorem 4.3. We do this by studying
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the diophantine inequality

| wj + e+ kj | < vO-B'“/2 , (4.11)
which follows from (4.9), where vy = max ( v, 2-|Go-p-/A| )/&~[u| , and
¢j = j-¥ . We have to distinguish between the homogeneous case . = 0 and
the inhomogeneous case wj » 0 . We apply the methods that have been

described in Sections 3.2 and 3.3 respectively. Unlike in other chapters,

here we give the results in the form of precisely defined algorithms.

First we study the homogeneous case ¢j = 0 . We have the following
algorithm. Let N be an upper bound for the solutions of (4.11), for example

the bound found in Theorem 4.3.

ALGORITHM H. (reduces given upper bound for (4.11) in the case ¢j =0).

Input: ¢, B, [u], VO’ N .

*
OQutput: new, reduced bound N for n .
n,/2
(i) (initialization) Choose 0, > 2/log B such that B /nO > 2-v
NO := N ; compute the continued fraction

0 ;

lel = 1 0, ap, 8y, -, a£0+1, o]

and the denominators 99 of the convergents of |g| , with

i =0 ;

LO so large that qLO <N

<q ;
0 LO+1
(ii) (compute new bound) Ai ;= max(a ceeady +1) ; compute the largest

integer Ni+1 such that

Ni+1/2
B /Ni+l < vo-(Ai+2) s

and Li+1 such that 9 < Ni+1 < 9
i+l i+l
(iii) (terminate loop)
if n, = Ni+ < Ni then i :=1i + 1 , goto (ii) ;

0 1

*
else N = max(nO,Ni+1) , stop .

LEMMA 4.6. Algorithm H terminates. Inequality (4.11) with ¢j = 0 has no

*
solutions with N < n <N .

Proof. Termination is obvious, since all Ni are integers. Note that

Bx/z/x is an increasing function for x = 2/log B . Hence, if n > ng
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| lel = legl/n 1< w8 o/m < 1/20°

It follows (cf. (3.6)) that |kj|/n is a convergent of le] , say
]kj|/n = pm/qm . Then q, <n , and (cf. (3.5)),

2
| 1ol = p/a, | > /G, +2)-a; -

Suppose n < Ni for some 1 >0 . Then m < Li . Hence,

n/?2 -2 -1

B’ "/n =< M 1 et - ]kj!/n | < vO-(am+l+2) < VO~(Am+2)
It follows that if Ni+l z n, then n < Ni+1 . m|
Next we study the inhomogeneous case wj = 0 . Again, let N be an upper

bound for n satisfying (4.11)

ALGORITHM 1. (reduces upper bound for (4.11) in the case wj = 0 ).
Input: o, wj, B, vy N .
*
Qutput: new, reduced upper bound N for all but a finite number of

explicitly given n .

(i) (initialization) N0 := [N] ; compute the continued fraction
lef = [0, a;, ay, -y 3y, o0 ]
0
and the convergents pi/qi for i=1, ..., LO , with LO so large

that q; > A~NO and ”qL -¢j” > 2-NO/qL . (If such LO cannot be
0 0 0

found within reasonable time, take LO so large that qL > 4-N0 )

i =0
(ii) (compute new bound)

if “ql),]l)_]” > 2'Ni/qL'
1 1

2
then Ni+l i= [2~log(qLi-VO/Ni)/log B} ;
else compute KeZ with | K - q -wj | =< % ; compute n, € z
i
0 =< n, < 9 with K = ng'Py = 0 (mod qL') ;
i i i
if n = n, is a solution of (4.11), then print an
appropriate message;
Ni+1 1= [2'1og(4‘qci'v0)/log B} ;
(iii) (terminate loop)
if Ny <N
then i :=1i + 1 ; compute the minimal Li < Li+1 such that
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q(’i > 4~Ni and HqLi~¢j” > 2-Ni/qLi (if such Li does not
exist, choose the minimal Li such that q, > A-Ni )3
i

goto (ii) ;
*
else N := Ni ; stop .

LEMMA 4.7. Algorithm 1 terminates. Inequality (4.11) with ¢j = 0 has for

*
N < n < N only the finitely many solutions found by the algorithm.

Proof. It is clear that the algorithm terminates. Suppose that n =< Ni for

some i = 0 . then if HqL ~¢j” > 2~Ni/qL , we have
i i

”qt,'¢j“ ”qL_'(¢j+n-¢+kj) ~ngeq |
1 i i

-n/2
< q£i~|¢j+n-¢+kj] + n/qLi < qLi~VO-B + Ni/qﬂi

IA

It follows that n <N, , . If ”qﬁi'¢j“ 2.Ni/q{;-l , then

[Kin-py +ko-qp | = [Koqp ¥y + ap - [¥yneerky ] + nefpy —qp -9
1 1 i 1 1 1

-n/2 3
+ q -VO~B / + Ni/qt < " + q ~VO-B
i i i

-n/2

=<

SRS

-n/2 _ 1 _ . e .
If qL"VO'B < T then K + n~p£i + kj‘qfi = 0 , since it is an integer.

By (pLi,qti) =1 it follows that n = n, (mod qLi) . Since qLi > Ni , the

i1sq s . _ . -n/2 1
only possibility is n = Ny - if q£i VO'B > "
immediately. O

, then n < N, follows
i+l

We remark that in practice one almost always finds an Ci such that

Hqc.-¢j” > Z.Ni/qi, , if N, is large enough.
i i

4.4, Upper bounds.

In this section we will derive explicit upper bounds for the solutions of
(4.1), both in the hyperbolic and elliptic cases. Our first step is the
application of the p-adic theory of linear forms in logarithms, which works
the same way in both cases. We use it to find a bound for m., in terms of

log n . Then we combine this with the results of Section 4.3 on the growth of
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the recurrence sequence, which for the solutions of (4.1) yield a bound for

n in terms of the m, (Corollaries 4.3 and 4.5).

Assume that n, > 2 . Let D be the discriminant of Q(/A) . Put
1/4
L = log max ( |e-D| » lax/Al, Ja-u-/Al, [B-X-YBl, [B-p-Yb) )

Let d be the squarefree part of A . For i=1, ..., s put

., =2 if p., | 4, ¢; = 1 otherwise,

: _ : d N _
p; =2 if p, =2, d=15 (mod 8) or if pi>2,[g)——l,
Py = 1 otherwise,
P
6 9 7 3 4 4~pi+4 ¢i~L-pi + 2/L 53
C =10"- . ‘L -p 1+
4,1 pi~log P i i log 0,

LEMMA 4.8. The solutions of (4.1) with n = n, satisfy

3 .
my < C4’1~(log n) for i =1, ..., s

Proof. Rewrite (4.1), using (4.5), as

Pk —i w ,-n = i
B - B et

Then, by (4.6),

w o-n > ™ Ak -L
m, < m, - ordp_(x) = Ordpi[i'ﬂ . Elpi } - ordpi[Lé] _(_XJ]

i i
Apply Lemma 2.5 (Schinzel’s result) with " = a, &' = B, x" = u-/A,
x' = -A-/A . Then we find, using ord_ () = ¢.-ord_ () ,
:pi 1 pi
7 4op.+4 P
6 2 -3 _4 i i 3
m; < 10 [ﬁl_fc;g——p_j ey Loepy ( log n + e Lep 2/L )7,
from which the result follows, since n = ng . =}

Put

C, = max(C

4 4 i) , m = max(mi) , P =

i ’ i i

I —wn
el
H

1
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In the case A > 0 , let 0 > max ( 2, log|A/u|/logla/B] ) , and put

(9]
I

log P / ( logla| + min(0,log(y/|w()) ) ,

a
I

max ( 8-C,-(log 27~c4-cs)3, 8s1-c, } .

In the case A < 0 , put

a
I

4
2 max { C3 + Tog B-log[Z-]GO-y-/AI),

3 10gB logB g 10gB ’

3 .
C8,i = Ca‘i~(log C7) for i=1, ..., s

Then we have the following result, giving explicit upper bounds for the

solutions of (4.1).

THEOREM 4.9. Let n, Mys ey M be a solution of (4.1).
(i). If A >0 and n = 1 then n < C5~C6 and m < C6
(ii). If A< 0 then n< C7 and m; < C8 i for 1 =1, ..., s

Proof. (i). Corollary 4.3 yields n < C5-m . By Lemma 4.8 we now have

3 3
m < Ca~(log n)~ < CA»(log Cs-m)

1f CA~C5 > (e2/3)3 , we apply Lemma 2.1 with a =0, b = C4~CS, h =3, and
. 3 2 3
we find m < 8-C4~(1og 27-C4-C5) . If C4~CS < (e"/3)” , then

n < C5~m < CthS-(log n)3 < (e2/3)3-(1og n)3 R

from which we deduce n < 12564 . Now, m < Ca-(log n)3 < 841404

(ii). From Lemma 4.8 and Corollary 4.5 we see that

4
n < C3 + Tog B-log[2-|GO~u-/A|] ,
or
4-C,-log P
4-log|w| 4 3
n < C3 + Tog B Tog B (log n)

The result now follows from Lemma 2.1, since 4-04-10g P/log B > (e2/3)3 .o
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4.5. Symmetric recurrences: an elementary method.

Before we give our reduction method for the upper bounds following from
Theorem 4.9, we treat in this section separately the cases of ’‘symmetric’
recurrences, for which the reduction methods fail. The reduction methods make
use of the zero-dimensional p-adic diophantine approximation, as explained in

Section 3.9, applied to the p-adic linear form
log [i) + n-log [2)
P pp
for p = Pys --es Pg o This means that we must study the p-adic number
o = - log () / log (3)
P 4 PA

It may however happen that this number ¥ is zero, or that all digits in the
p-adic expansion of ¢ are zero from a certain point on. Then obviously the
reduction process of Section 3.9 breaks down, since it 1is based on the
assumption that the p-adic expansion of 9 contains sufficiently many

non-zero digits.

Define the following special ’'symmetric recurrences’. For a, B8 as defined

in Section 4.2, let

for d =-1 (d is the squarefree part of A ) also

(1+/¢1 )"+ (1F/¢-1) )",

[}
|
i

and for d = -3 also (with w=p or p» for p = %~(1+/(-3)> )

U@ =(1l+e Yool 4+ (1 + w80,
Vn(w) =wa +wB n’
for all n € Z . Note that
- — —
Tn-Tn = 2-S2r1 A Un(w)~Un(w)~Rn = 3-R3n s Vn(w)-Vn(w)-Sn = S3n .

We have the following lemma. We assume that ordp(ﬁ) >0
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LEMMA 4.10. If O has only finitely many nonzero p-adic digits, then there

exist an r € N and a k € Q@ such that G = xR , or G = k'S , or
0 n n n n-r

+ .
(if d = -1) Gn = n-Tn , or (if d = -3 ) Gn = n-Un(w) or n-Vn(w) ,

where w = p or p . Further, r =0 if A <O

Proof. By ordp(ﬁ) > 0 we have 9 = r for some r € N . From the

definition of 9 we infer
r
-X
SRR
gp[ﬂ 7
hence n = (ﬂ/a)r~(p/A) is a root of unity. It follows that we can write

6 =xa" (" 4B

n-r
n )

First let B = %1 . Then A > 0 and

Gy = Ao (@) = ta (of 2]

Gl — .ot [ al—r + ﬂl—r ) _ ar_( ar—l + ﬁr—l:
Note that

(" P g7 QT g )= (2, a+B) =1 or 2,

( ar—l _ ﬁr—l’ of - ﬁr ) —a - B

B (G.,G,) =1 it follows that +1.a" = 1, L oor 1 (a—B) , respectivel
y 01 > y
and the assertion follows.

Next suppose |B| = 2 . Then

Gy B (mea ™t 4 gy =g (nat 2T
Since (B,Gl) = 1 , we have a-f | q-ar + ﬁr . By (A,B) = 1 we have
(a,8) = (1) , and from a | B° it then follows that © = r = 0 . So
GO = A-(l+n) € Z . The result now follows easily, since for 15 the only
possibilities are *1 for all d , and moreover +/(-1) if d = -1 , and
tp, *p 1if d = -3 . o

In the cases of Lemma 4.10 we can treat (4.1) as follows. The smallest index
n = g(m»pL) > 0 such that m~pL | Gn grows exponentially with £ . Also,
Gn grows exponentially with n , as follows from Lemma 4.2 and Theorem 4.4,

Hence G grows doubly exponentially with t . It follows that
g(m-p)
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ml m

a=wp, ...'p S cannot keep up with G as the m, tend to infinity.
1 s m m g(a) i

It follows that if Py -...~psS is large enough, there exists a prime g

such that q | Gg(a) but q | a . Now the sequences (Rn), (Sn) have

special divisibility properties, such as

R { R if and only if n | m ,
n m

Sn ! Skn for odd k ,

ordz(Sn) < ordz(S3) for all n=>=1

Making use of this kind of properties it can be proved that q | Gn whenever

a | Gn . This gives an upper bound for the solutions of (4.1), since for

those solutions a | Gn but q t Gn . We give two examples.

Example. Let A =16, B =1, GO =1, G1 =8, w=1, Py = 2, P, = 11 . Then
=8+ 3/7, B=8-3Y7, x=ypu-= % , so A/u 1is a root of unity. Hence

[0
9% =0 , for both p =2 and p = 11 . Note that we have a sequence of type
S_  here. We have

n

n -3 -2 -1 0 1 2 3
Gn 2024 127 8 1 8 127 2024
Gn (mod 16) 8 -1 8 1 8 -1 8
Gn (mod 11) 0 6 8 1 8 6 0
Gn (mod 112) 88 6 8 1 8 6 88
It follows that ordz(Gn) =0 or 3 , according as mn 1is even or odd, and

ordll(Gn) > 0 if and only if n = 3 (mod 6) . Now, G3 | G3k holds for all
odd k . Note that G, has exactly 3 factors 2 , and 1 factor 11 . But

3
it is larger than 23-11 = 88 . Hence there is a prime q , distinct from 2
m,  m,
and 11 , such that q | Gn whenever 11 | Gn . Thus Gn =2 11 has no
solutions with m, # 0, so that there remain only three solutions: n = -1, 0

and 1 . Note that it is not necessary to know the value of q explicitly.
In this case it is 23 , and indeed it is easy to show directly that 23 | Gn

if and only if n = 3 (mod 6)

Example. Let A =5, B = 13, GO = Gl =1 . Then A = -27, a =1+ 3.p,
A = (14p)/3 . We solve Gn = +#2™ | The sequence Gn = 2-a" + X2 is related
to the sequence Hn = %o + 22" and to Rn = ( o - &" Y/ ( a - a ) by
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G ‘H -R_ = R, /3 . Since R has nice divisibility properties, we have
n n n 3n’ n

useful information on the prime divisors of Gn and Hn . We find:

n 0 1 2 3 4 5 6 7 8
n 1 1 -8 =53 -161 -116 1513 9073 25696
- 1 4 7 -17 -176 -659 -1007 3532 30751
- 0 1 5 12 -5 -181 -840 -1847 1685

Now, G = 0 (mod 16) if and only if n = 8 (mod 12) , Hn =0 (mod 16) if

n
and only if n = 4 (mod 12) , and Rn = 0 (mod 16) if and only if
n = 0 (mod 12) . Note that Gh‘Ha-R4 = R12/3 = —24'5-7‘11‘23 . Considering
the sequences modulo 5, 7, 11 and 23 we find that 24-7-11-23 | Gn-Hn for

m

all n =0 (mod 4) , and in fact 11 | Grl whenever 16 | Gn . Thus Gn = 12

implies m < 3 . It follows from Section 3 how to solve |Gn| < 8

We note that a process as described above can always be applied when dealing
with a situation as in Lemma 4.10. There is an alternative way, that we will
mention in the next section. It provides immediately a very sharp upper bound

for the m,
i

4.6, A basic lemma, and some trivial cases.

We introduce some notation, and then give an almost trivial lemma that is at

the heart of our reduction methods for both the hyperbolic and the elliptic

cases, Let for i=1, ..., s
e, = —ord A) , f. = ord lo — , . =f., - e. ,
i pi( ) i pi( gpi(z)) By i i
9. = - log (:i]/log G%
i P P, B

By Lemma 4.1 the pi—adic logarithms of «/f and -X/p exist. Note that

logp (a/B) = 0 , since the sequence (Gn) is not degenerate. Note that for

i
conjugated £, & also 1ogp§ and 1ogp§' are conjugates, hence
log(¢/¢’') € Vh-ﬂp . Hence both numerator and denominator of 61 are in
YA-Q , so 9, €@ . Hence, if ®, = 0 , we can write
Py i P i
<«
t
9, = ¥ u, ,°P. ,
i =k i, Y1
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where k, = ord (¥.) and u,
i p; i it

following lemma localizes the elements of (Gn) with many factors pi , in

e (0,1, ..., pi—l }  for all £ . The

terms of the pi—adic expansion of 61

LEMMA 4.11, Let n € NO . If ordpi(Gn) + e; > l/(pi—l) then

ordpi(Gn) = 8; + ordpi(n—ﬁi)

Proof. By Lemma 4.1 we have

°rdp Cn) T e T “dpi[{%r‘[%]] ) ordpi[[%] ' [%]n_lJ

i
With £ = (—/\/p)-(a/ﬂ)n - 1 we have ordp £y > 1/(pi—l). Hence
i
ord (§) = ord_ (log (1+£)), and it follows that
Py Py Py

a -
d G + .= d . = + 1 _l ]
or '( ) e, or i[ n-log i[ﬂ] og .[

i J

= ord (n-9,) + f. . 0
P i i

We have to exclude some trivial cases first. The case where all pi—adic
digits of 61 from a certain point on are all zero has been dealt with in
the previous section. But this case can also be dealt with as follows. Note
that 6i =r holds for all i =1, ..., s with the same r , which is the

r from Lemma 4.10. Thus, by Lemma 4.11,

m, < max [ gi + ordpi(n—r), 1 - ei ] < gi + 1 + ordpi(n—r) . (4.12)

Then we have, if A > 0 , by Corollary 4.3,
s
n-logla| < ¥ (gi+1)~log p; - log(y/|w|) + log|n-r| ,
i=1

from which a good upper bound for n can be derived. And if A < 0 , the
proof of Lemma 4.10 yields 6i =~ 0 , whence, by (4.12),

s m
16,1 = 1wl [l p; = vy
i=1
for some constant vy - Only minor changes in the results and algorithms of

90



Section 4.3 suffice to deal with this inequality instead of (4.7).

Another trivial case is that of ordp (61) < 0 . Then the solutions of (4.1)
i
satisfy m < 1/(pi—1) - e, , so, by Lemma 4.11,

m, = f, - e, + ord (n-9,)
i i i P i

Since n€ Z and ord (38.,) < 0 we have ord_ (n-9,) = ord_(¥.,) . Hence
p. i P. i p. i
i i i
m, < max ( fi + ordp'(éi), 1/(pi—1) ) -ey -

1
1

Thus we may assume without loss of generality that ordp (6i) =z 0 for all

i
i=1, ..., s , and that infinitely many pi—adic digits u; . of ﬁi are
nonzero.
4.7. The reduction algorithm in the hyperbolic case.
First we give the reduction algorithm for the case A > 0 . It is based on

Lemma 4.11 and Corollary 4.3 only. Let N be an upper bound for n for the
solutions n, My, e m of (4.1). For example, N = CS-C6 as in Theorem
4.9,

ALGORITHM P. (reduces given upper bounds for (4.1) if A > 0 ).

Input: a, B, X, p, W, Pys «-es Py N .
*
Output: new, reduced upper bounds Mi for m, for i=1, ..., s, and N
for n .
(i) (initialization) Choose an n, > 0 such that g > log|u/M|/logla/Bl ;
-n
0
Y o= A = el /B ;
. = ord A) + ord lo
g e p, (logy (a/))
3/2 if P; = 2 for i =1, , S
hi - ordpi(k) + 1 if P; = 3
1/2 if Py > 5
s 8
g=7/|w|'ﬂpi’NO:=N)
i=1
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(ii) (computation of the ﬁi’s) Compute for 1 =1, ..., s the first r,

pi—adlc digits ui,L of

0
—X {
8, = ~log C—J/log Gq = Yu, ,p, .,
i Py H P B o Lt
Ty
where r. 1is so large that p. = N, and u, = 0 ;
i i 0 1,ri
(iii) (further initialization, start outer loop) S; o ' T, + 1 for
i=1, ..., s ;j:=1;
(iv) (start inner loop) i =1 ; Kj = _false, ;
(v) (computation of the new bounds for m, terminate inner loop)
- s
o > .
Si,j :=nmin { s € WO | p; 2 Nj-l and ui,s =0} ;
if s < s,
- i,j i, j-1
then K, := _true. ;
if 1< s

then i :=1i + 1 ; goto (V) ;

(vi) computation of the new bound for n , terminate outer loop)

s
Nj := min ( Nj—l’ [izlsi’j.log P, - log g )/logla| ) ;

if N, =2n and K,
J o = 3]
then j :=j + 1 ; goto (iv) ;
*
else N = max ( Nj’ n, )
Mi = max ( hi’ g + Si,j ) for i=1, ..., s ; stop.
THEOREM 4.12. With all the above assumptions, Algorithm P terminates.
*

Equation (4.1) with A > 0 has no solutions with N =n <N, m; > Mi for
i=1, ..., s

Proof. Since the pi—adic expansion of ﬂi is assumed to be infinite, there

exist r, with the required properties. It is clear that 5, 4 < T < S50
and that N, < N, So s. . < s, . helds for all j = 1 . Since
J j-1 i,j i,j-1
s, . >0 , there is a j such that N, = n or s, ., = S. . for all
i,j 0 i,j i,j-1

i=1, ..., s . In the latter case, Kj remains _false. ; in both cases the
algorithm terminates.

We prove by induction on j that m < g, o+ s, i for i=1, ..., s, and

n < Nj hold for all j . For j = 0 , it is clear that n < NO . Suppose

n < Nj—l for some j =z 1 . Suppose there exists an i such that
m, >g, +s, . . From Lemma 4.11 we have
i i i,j
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ordp'(n—ﬁi) =m, - g, =2s, . +1,

i i i i,j

hence, by wu, =0,
i,s, .
i,j
83 j s
n = 2 u, L~pL = p RERPS N._1 s

t—0 J

which contradicts our assumption. Thus, m, < g; + s j for i =1, ..., s

Then from Corollary 4.3 it follows that

(8¥s; )10 by - LogCy/I¥]) | /loglal

ne| 3

i=1
hence n < Nj . a
Si s
Remark 1. In general, one expects that 1 'J %ill not be much larger than
Nj , 1.e. not too many consecutive pi—adic digits of 61 will be zero. Then

N, 1is about as large as log Nj—l . In practice, the algorithm will often
terminate in three or four steps, near to the largest solution. The
computation time is polynomial in s , the bottleneck of the algorithm is the

computation of the pi—adic logarithms.

Remark 2. Pethsé [1985] gives for s = 1 a different reduction algorithm.
For a prime P; he computes the function g(u) , defined for u e N as the
smallest index n = 0 such that Gn = 0 and p? | Gn . Note that if the
pi—adic limit 1im g(u) exists, then by Lemma 4.11 it is equal to 61

u->®

@

Remark 3. If B = *1 (hence A > 0 ), we can extend the sequence {Gn)n=0

to negative indices by the recursion formula

Gn_l = A.B.Gn - B~Gn+1 for n=20, -1, -2,

(cf. (4.3)). Then (4.5) is true for n < 0 also. We can solve equation (4.1)

with n € Z not necessarily nonnegative, by applying Algorithm P twice: once

for (G )oo , and once for the sequence (G')co , defined by G' =G
n ' n=0 n n o n n=0 n -n
Note that G/ =B -(sa +x-f) , and
log  (-u/X) log  (=A/w)
9, = - b =+ % = -9, for i=1 s
i log  (a/B) log_ (a/B) i ’ ’
Py Py
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Now, instead of applying Algorithm P twice, we can modify it, so that it
works for all n € Z , as follows. Lemmas 4.8 and 4.11 remain correct if we
replace n by In] . In Theorem 4.9 the lower bound for ng must be
replaced by

ng > max ( 2, |loglu/rlI/1ogla/Bl, |log|A/ull|/logla/Bl ) .

and vy has to be replaced by

-n -

y = min (Al = lul-la/Bl Oy fwl = IA-1a/Bl )

Similar modifications should be made in step (i) of Algorithm P. Further, in

step (ii), T should be chosen so large that

r,
. i
if Py » 2 then p; > NO and ui,r. = 0, ui,r. *p - 1;
i i
rl~l
- .
else pi > N0 and ui,r, > ui,r.-l s
i i
and similar modifications have to be made in step (v) for 5 5o With these

changes, Theorem 4.12 remains true with n replaced by |n|

We conclude this section with an example.

Example. Let A =6, B =1, G, =1, G, = 4, w = 1, Py = 2, P, = 11 . Then

0 1
a=3 4292, B=3 =252, A= (1+242)/62, p=(-1+272)/4:72,
and A = 32 . With ng = 960 = 1.142x1026 we find CA < 2.49X1020 . With the
modifications of Remark 3 above we have ¥y > 0.323, C5 < 1.76,
m m
C6 < 2.62x1026, CS-C6 < 4.62)(1026 . Hence all solutions of Gn = 2 1~11 2
satisfy |n| < 4.62X1026, max(ml,mz) < 2.62x1026 . We perform the reduction
Algorithm P step by step. (We write the p-adic number ), uL-pL as
£=0
0.u0u1u2.... , and if p > 10 we denote the digits larger than 9 by the
symbols A, B, C, ... ).
(i) ng = 2, v > 0.303, g = 0, g1 = 1, g > 0.0275,
1 26
hl = -1, h2 = NO = 4.62x10
(ii) 61 = 0.10111 10111 01000 11100 10100 01001 10001 10010

00001 11101 01000 10000 01001 10011 10101 01101
11100 01011 00001 11010 00011 01001 01010 00101
10001 01011 00000 11001 01011 11101 10100 01011
001.... ,
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9, = 0.A9359 05530 7330A 1A223 96230 3A006 A3366 83368

2
8270.... ,
so r, = 90 (sinc =1 =0 289 > N, )
17 © Y1897 > Y1907 0
; B 29
r, = 29 (since u2,29) =6, 11 > NO ).

(iii) 51,0 = 91, SZ,O = 30 ;
(v)=(vi) Sl,l = 90, 52’1 = 29, Kl = _true., Nl < 76.9 ;
(v)-=(vi) 51’2 = 10, 5212 = 2, K2 = _.true., N2 < 8.7 ;
(v)-(vi) 51’3 - 6, 52’3 = 1, K3 = _.true., N3 < 5.8 ;
(v)—=(vi) 51,4 = 6, SZ,A = 1, K4 = ,false., N4 < 5.8
Hence |n| =< 5, my < 6, m, < 2 . We have
n l -5 ~4 -3 -2 -1 0 1 2 3 4 5
Gn I 2174 373 64 11 2 1 4 23 134 781 4552
So there are 5 solutions: with n = -3, -2, -1, 0, 1

4.8. The reduction algorithm in the elliptic case.

We now present an algorithm to reduce upper bounds for the solutions of (4.1)
in the case A < 0 . The idea is to apply alternatingly Algorithms P and one
of H and I. Let N be an upper bound for n , for example n = C7 as in
Theorem 4.9.

AILGORITM C. (reduces upper bounds for (4.1) in the case A <0 ).

Input: o, B, A, 4, W, Py, ..., P, N
*
Output: new, reduced upper bounds N for n , and Mi for m, for
i=1, ..., s
(i) (initialization) NO = [N] ; j =17
. = ord A) + ord lo a
g; b, OV p, (108, (2/8)
3/2 if p; = 2 for i =1, , S
hi = ordpi(x) + 1 if p; = 3
172 if p; 2 5
(ii) (computation of the 6i's, @, ¥ ) Compute for i =1, ..., s the

first r, pi—adlc digits ui,L of
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1

Y
5. = -1 i W
ngi[ W/ %p.

= Tu Py,
[;] LE i, ¢ Py

r,

. i
where r, is so large that Py > NO and u, 0 ; compute

¥ = Log(-A/u)/2xi , and the continued fraction

1
le] = |§;;-Log(a/ﬂ)| =10, ap, oo, ato’ o]
with the convergents pi/qi for i =1, ., LO , where LO is so
large that q£0~l < NO < qLO if y =0 ; qLO > A-NO and

lla | > 2-8,/q if ¥ =% 0 and such {, can be found in a reasonable
LO 0 CO 0

amount of time, q > 4-NO otherwise;
0

(iii) (one step of Algorithm P) For i =1, ., s put

. s .
Mi,j I= max [ hi' g; + min { s € NO | 12 > Nj—l and ui,s = 0 ) ] ;
(iv) (one step of Algorithm H or I)
if =0
s Mi j
then A := max(al,...,aL._l) ;v o= |w|- E P R
n0/2
choose ng = 2/log B such that B /nO = v/2-{pul 5
compute the largest integer N, such that
N./2 J
B /NS (A42) /b
N = max(n,,N.) ;
.J O J) -
if Nj < Nj—l then compute Lj with 9 1 < Nj < qu ;
j i=3j+1; goto (iii) ;
else if ”q ~¢“ > 2N, ./q
Lj—l j-1 £j—l
then N, := [2~1og[q2 v/b-fu) N, ]/1og B] ;
i Lj—l j-1
else compute K € Z with |K—qL Y| =< % ;
j-1
compute mng € Z, 0= n, < q{;j_l , with
K + NPy = 0 (mod 9 )
j-1 j-1

if n = n, is a solution of (4.1)

then print an appropriate message;

N, := [2-log(q, v/|ul)/log B] ;
J -1
if N. <N,
= 3] j-1
then compute the minimal tj < Lj—l such that

96



qu > A-Nj and ”qu-¢” > Z.Nj/ql, (if such Lj

3

does not exist, choose the minimal tj such that

qL. > A-Nj ), j =3+ 1 ; goto (iii) ;
J
5 3 * . . = 3 = .
(v) (termination) N := Nj-l ; Mi : Mi,j for i 1, ..., s ; stop.

The following theorem now follows at once from the proofs of Lemmas 4.6, 4.7

and Theorem 4.12.

THEOREM 4.13. Algorithm C terminates. Equation (4.1) with A < 0 has no
*

solutions with N < n < N and mi > Mi for 1 =1, ..., s , apart from

those spotted by the algoritm.

We conclude this section with an example.

Example. Let A =1, B=2,6,=2,G =3, then A=-7, a=(1+ V-7 /2
and A = ( 2+ /-7 )//-7 . Let w = #1, Py = 3, P, = 7 . We have with n, = 2

0
the following results: C4 < 6.40X1016, C3 < 9.14X1029, C7 < 7.42x1030,
22
max(ngl,CS,Z) < 2.30x10 . Further, g1 = 1, gy = 0, hl = 1, h2 = 0 . By
Theorem 4.9 we may choose N0 = 7.42x1030 . We have
@ = ( ™ - arctan(¥Y7/3) ) / 2=«
={0, 2, 1, 1, 2,16, 6, 1, 2, 2, 13,
1, 1, 3, 1, 1, 2, 1, 2, 1, 1,
i, 1, 1, 9, 2, 1, 2, 1, 7, 1,
6,269, 4, 3, 1, 1, 50, 2, 1, 6,
i, 1, 2, 1, 1, 7, 1, 61, 1, 12,
3, 7, 4, 7, 3,121, 1,21, 2, 1, 7, ],
¥ = ( © - arctan(4-/7/3) ) / 2n
= 0.29396 28336 99645 40267 89566 60520 01908 06203... ,
61 = 0.20010 12210 00011 02102 00211 00222 02220 12021
10020 20202 21102 00121 01000 01002 11100 20122
11111 22202 21021 02212 2200... ,
62 = 0.32542 12042 43561 34020 61561 13452 10116 33152
25336 45044 11254 55033...
Now we choose {4, = 61 , since

0
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9y = 142 51183 31142 44361 19375 51238 81743 > A-NO ,
and |]q61-1/)” = 0.24487... > 2:No/q,, = 0.104... . We have Mpq = 67,
M2 1 = 37, and we find N1 = 637 . Next we choose Ll = 9 |, since
qg = 10102 > 4x637  and  [qg-¥] = 0.38745... > 2x637/10102 . We have
M1’2 =7, M2,2 =4 , and we find N2 = 74 . Next we choose LZ = 6 , since
qg = 1291 > 4x74 , and ||q6-¢|| = 0.49398 > 2x74/1291 . We have M, , =6 ,
M2 3 = 3, and we find N3 = 60 . In the next step we find no improvement.
Hence n < 60, m = 6, m, < 3 . It is a matter of straightforward computation
m, m
to check that there are only the following 6 solutions of Gn = 3 1~7 2
2 2 2
G1 = 3, G2 = -1, G3 = -7, G5 = 37, G7 =1, G17 =377

4.9. The generalized Ramanujan-Nagell equation.

The most interesting application of the reduction algorithms of the preceding

section seems to be the solution of the generalized Ramanujan-Nagell equation

(4.2). Let k be a nonzero integer, and let Pys s Pg be distinct prime
numbers. Then we ask for all nonnegative integers x, Zys o cees Zg with
s z,
x2 + k = ﬂ pi1
i=1
First we note that z, = 0 whenever -k is a quadratic nonresidue
(mod pi) . Thus we assume that this is not the case for all 1i . Let P | k
for i =1, ..., t and Py I k for i =1t+1, ..., s . Let ordp (k) be odd
i
for i =1, ..., r and even for i = r+l, ..., t . Dividing by large enough
powers of Py for i =1, ..., t , (4.2) reduces to a finite number of
equations
2 sz
Do-x1 + kl - 1 P (4.13)
i=r+1
with Py ! kl for i =1, ..., s , and DO composed of Py» ---» Py only,

S-r

and squarefree. We distinguish between the 2 combinations of zi odd or

u

<

even for i = r+l, ..., s . Suppose that zi is odd for i = r+l,

and even for i = u+l, ., S . Put
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u (zi—l)/Z s z£/2
y= 1 »; N | I - PR (4.14)
i=r+l i—u+l

Then, from (4.13),

2 b 2
Dy-x] - ({ ' N Py )y = -k . (4.15)
i=r+1

u
Put D = Dg- M p; - Then (4.14) and (4.15) lead to
i=r+1

s m, , (4.16)

u
with v =1y ]| P;s W =X k, = kl- N P; > and also to
i=r+l i=r+1

s m, s (4.17)

with v = Do-xl, w o=y, k2 = —kl~DO . We proceed with either (4.16) or

(4.17), whichever is the most convenient (e.g. the one with the smaller

lkyl )

If D=1, then (4.16) and (4.17) are trivial. So assume D > 1 . Let € be

the smallest unit in Z + YyD-Z with € > 1 and N(e) = *1 . It is well
2 2

known that the solutions v, w of v - D-w = k2 fall apart into a finite
number of classes of associated solutions. Let there be T such classes, and
choose for r =1, ..., T in the 7 th class the solution VT’O, wr,O such
that T = VT’O + WT,O'/D > 1 is minimal. Then all solutions of
v2 - D-w2 =k are given by v = v , w o= 1w , with
2 T,n 7,n

vf,n - [ 71.€n + 7;'6 : ]/2 (4.18)

wr,n = [ 71~en - 7;~e_n ]/2-/D
for : e Z , where 7& =V, oo " wr,O'/D . That is, (vfyn}:;_eo and
(wf,n)n=—m are linear binary recurrence sequences. Now, (4.16) and (4.17)
reduce to T equations of type (4.1). If k2 =1, then T =1, Y <6
71 = e_l . If k2 | 2-D, k2 » 1 , then it is easy to prove that 73 = |k2|-e,
7&2 = |k2|-e_1 , so that

99



v gl [ G i) G )P 2

]2n+1]/2-/D.

2n+l ,
T W ) KN O
In both cases, (4.16) and (4.17) can be solved by elementary means (see
Section 4.5, of related interest are Stermer [1897]), Mahler [1935], Lehmer
[1964], Rumsey and Posner [1964] and Mignotte [1985]). If k2 } 2-D , then we

s m,
: : . i
apply the reduction algorithm to one of the equations Ven = 1 P,
! i=r+1
s my
wooo= ﬂ P . Note that n is allowed to be mnegative, since

i=r+1
B = *1 , so we can use the modified algorithm of Remark 3, Section 4.7.

Thus we have a procedure for solving (4.2) completely. It is well known how
the unit € and the minimal solutions VT,O’ wT,O for r =1, ..., T can
be computed by the continued fraction algorithm for D . We conclude this
section with an example. It extends the result of Nagell [1948] (also proved

by many others) on the original Ramanujan-Nagell equation x2 +7 = 2%

THEOREM 4.14, The only nonnegative integers x such that x2 + 7 has no

prime divisors larger than 20 are the 16 in the following table.

X x2 + 7 X x2 + 7 X x2 + 7
0 7 7 56 = 2°.7 31 968 = 2°.11°
1 g - 2° 9 88 - 2°.11 35 1232 = 2%.7.11
2 11 11 128 = 2/ 53 2816 = 28.11
3 16 = 2% 13 176 = 2% 11 75 5632 = 2°.11
5 32 = 2° 21 448 = 2%.7 181 32768 = 212
273 74536 = 2°.7.11°

Proof. Since -7 1is a quadratic nonresidue modulo 3, 5, 13, 17 and 19 ,

we have only the primes 2, 7 and 11 1left, Only one factor 7 can occur in

2 .
x~ + 7 , thus we have to solve the two equations

x2 +7 =2 "-11 , (4.19)
x4+ 7=7-2"11 . (4.20)

Equation (4.20) can be solved in an elementary way. We distinguish four

cases, each leading to an equation of the type
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with ¢ } 2D , and either y or =z composed of factors 2 and 11 only.

We have:
21/2 22/2

(i) z1 even, z, even, y=2 -11 , z =x%x/7, c= 1, D = 7
(zl+l)/2 22/2

(ii) z odd, z, even, y = 2 -11 , z = x/7, c= 2, D= 14 ;

1 2
z,/2  (z,-1)/2
I

(iii) z1 even, z, odd, y =%, z =2 s c=-7,D= 77 ;
(zl—l)/2 (22—1)/2
2 <11 c=-7, D=154 .

(iv) z odd, z odd, y = x, 2z =

2

’

1

In the first example of Section 4.5 we have worked out case (i). We leave the
other cases to the reader.
Equation (4.19) can be solved by the reduction algorithm. Again we have four

cases, each leading to an equation of the type

with either y or =z composed of factors 2 and 11 only. We have

21/2 22/2

(i) z, even, z, even, y = X, z = 2 211 , c=-7,D= 1;
(zl—l)/2 22/2

(ii) zy odd, z, even, y = X, z =2 <11 s ¢c=-7,D= 2;
zl/2 (22—1)/2

(iii) z, even, z, odd, y =x, z =2 <11 , c=-7,D=11;
(zl—l)/2 (22—1)/2

(iv) zy odd, z, odd, y = x, z = 2 <11 ,c=~-7,D=22

Case (i) is trivial. The other three cases each lead to one equation of type
(4.1). In the example in Section 4.7 we have worked out case (ii). With the
following data the reader should be able to perform Algorithm P by hand for
the cases (iii) and (iv), thus completing the proof. In these cases N < 1030

is a correct upper bound.

10 + 3-/11 , A = ( 2 + Y11 )/2-/11 ,

Case (iii): a

61 = 0.10011 01000 00110 10100 00110 10110 01001 11110
11011 10010 00001 10110 10111 10100 00110 01101
01010 10010 11101 11001 10000 10010 01010 11011
00010 00111 01110 00101 01101 01111 10101 11110
10.... ,

9, = 0.23075 76425 39004 26090 A92A1 03757 07314 58414
7A238. ...

Case (iv): a =197 + 42-/22 , x = ( 9 + 2-¥22 )/2-Y22 ,
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0.11101 01101 01110 01010 10111 10001 00100 00011
10000 00110 10101 01100 01101 01111 01101 10101
01011 10100 01100 11101 10011 00011 00010 11110
10101 01100 10011 11111 01001 01110 00000 01110
011.... ,

52
]

0.6A001 68184 22921 902A0 724A4 16769 45650 16482
SAGAA. ... . a

@
I

Remarks. 1. The computation time for the above proof was less than 2 sec.

2. Let d(X,Y) = a-X2 + b-X-Y + c-Y2 be a quadratic form with integral
coefficients, and A = b2 - 4-a-c positive or negative. Let k be a nonzero

integer, and Py -oos Pg distinct prime numbers. Then we note that

2

4.a-9(X,Y) (2~a~X+b~Y)2 - AYT,

so that the diophantine equations

S Zi S Zi
o(x,k)y = [[p.”, X, [lp;) =k
. i . i
i=1 i=1
in integers X = 0 and Zys o oees Zg € NO , can be solved by our method.

4.10. A mixed quadratic-exponential equation.

In this section we give an application of Algorithm C to the following

diophantine equation. Let

B(X,Y) - a-X> + b-X-Y + Y2
be a quadratic form with integral coefficients, such that D = b2 - 4-a-c 1is
negative. Let q, v, w be nonzero integers, and Pys ---s Py distinct prime
numbers. Consider the equation
s My n
d(X,w: ﬂ P; ) = v-q (4.21)
i=1
in integers X , and n, My, ..., M € NO

Let B, B be the roots of &(x,1) = 0 . Let h be the class number of
Q(/D) . There exists a = € Q(/D) such that we have the principal ideal

equation (r) - (7) = (qh) ,Put n = ny + h-n2 , with 0 < ny < h . Then
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®(X,Y) = v'qn is equivalent to finitely many ideal equations

n n

= — 2 =2
(a-X-a-f-Y)-(a-X-a-B-Y) = (g)-(o)-(n} "-(m) ,
- ny
with (o)+(o) = (a:v-q ~) . Hence we have the equations in algebraic numbers
"2 -
a-X - apg¥Y¥=+vynm a-X - a-g-Y=n+vynm
B _ Ny B _ Dy
a-X - a-p-Y¥=r+ynm a-X - agyY=rvyn

where vy 1is composed of o , units, and common divisors of a-X - a:-8:-Y and
a-X — a-B-Y . Note that there are only finitely many choices for vy

possible. Thus, (4.21) is equivalent to a finite number of equations

= i i 2 - =2
a-(p-py-w- [l p, " =vyn " -y ",
i=1
- R J——
or, if we put X = y/a-(B8-8) and Gn = A + A s
2
s mg
Gn = w- ﬂ P, - (4.22)
2 i=1
Here, {Gn )Z o is a recurrence sequence with negative discriminant. So
2 2

(4.22) is of type (4.1), and can thus be solved by the reduction algorithm of

Section 4.8.

Before giving an example we remark that (4.21) with D > 0 is not solvable
with the methods of this chapter. This is due to the fact that in Q (/D)
with D > O there are infinitely many units, hence infinitely many

possibilities for Another generalization of equation (4.21) 1is to

Y
n t Ny

replace ¢ by I q . This problem is also not solvable by the method of

this chapter, since it does not lead to a binary recurrence sequence if

t = 2 . These problems can however be dealt with using multi-dimensional

approximation techniques, that are presented in other chapters of this

thesis. See Chapter 7.

We finally present an example.
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THEOREM 4.15. The equation

m m m m
X2 -3ty 2x4 2-(3 1y

in X€Z, n, m;, m;, € N, has only the following 24 solutions:

1’ 72 0

n my m, X n my m, X

1 1 0 -1, 4 5 2 0 -10, 19
1 0 0 -4, 5 6 0 0 -26, 27
2 0 0 -6, 7 7 0 0 -37, 38
3 0 1 2, 5 7 3 0 2, 25
3 1 0 -7, 10 11 1 1 -137, 158
4 0 1 -6, 13 17 2 2 -829, 1270

Proof. Put B =( 1+ /-7 )/2 . Then

X2 - XY+ 2-Y - (X-B-Y) - (X-B-Y)

Note that Q(¥/-7) has class number 1 , and that

_1+Y/7 1 -7

3 3 o Il = (24 /-7)-(2-Y-7)

m, m
Suppose vy | X - B-Y and v | X - B-Y . Then vy | (B-B)-Y = = /-7-3 1-7 2

On the other hand, v | 11-2" . Tt follows that + = *1 , hence X - 8-Y and
X - B-Y are coprime. Thus we have two possibilities:

1+ /-7 ]n

X - gy 5

(2% /7)) (

]
1+

X -p8Y

L+/-74n
(2F/-7)-(——)
in each equation the 2nd and 3rd +* being independent. Hence we have to

solve
. . . m
R T A LY LIS T AL R R P 3
with Giii - céj) - Z'Giii for =1, 2, and AP =3P o 2wy a7,
so that G(l) = G(z) =1, G(l) =3, G(z) = -1 . Note that 6?1) - _ﬂ$2) for
0 0 1 i i

1
D _ _y@)

i=1,2, and ¥ For j =1 we have solved (4.22) in the

example of Section 4.8. It is left to the reader to solve (4.22) for j = 2

This can be done with the numerical data given for the case j =1 . O

Remark. The computation time for the above proof was less than 3 sec.
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§
CHAPTER 5. THE INEQUALITY O < x - v <Y IN S-INTEGERS.

The results of this chapter have been published in de Weger [1987a].
5.1. Introduction.

let S be the set of all positive integers composed of primes from a fixed
finite set { Pys -oos Py } , where s =2 , and let § € (0,1) . In this
chapter we study the diophantine inequality

0<x -y< y6 (5.1)
in %, y € S . We give explicit upper bounds for the solutions, and we show
how the algorithms for homogeneous, one- and multi-dimensional diophantine
approximation in the real case, that were presented in Chapter 3, can be used
for finding all solutions of (5.1) for any set of parameters Py, -5 P

§ . For s = 2 the continued fraction method (cf. Section 3.2) is used. For

s =2 3 we use the L3—a1gorithm for reducing upper bounds (cf. Section 3.7).

Tijdeman [1973] (see also Shorey and Tijdeman [1986], Theorem 1.1) showed
that there exists a computable number ¢ , depending on max(pi) only, such
that for all x, ye€ 8 with x>y =3,

x -y >y/(log »°

Thus, for any solution of (5.1) a bound for x, y follows. Stermer [1897]
showed how to solve the equation x - y = k with k =1, 2 with an
elementary method (see also Mahler [1935], Lehmer ([1964]). Our method can
solve this equation for arbitrary k € 7Z . For the one-dimensional case
s = 2 , Ellison [1971b] has proved the following result: for all but finitely
many explicitly given exceptions, | 2* — 3 | > exp[x-(log 2 - 1/10)) for
all x, y € N . Cijsouw, Korlaar and Tijdeman (appendix to Stroeker and

Tijdeman [1982]) have found all the solutions x, y € N of the inequality

X §-x

lp°-q | <p

for all primes p, q with p < q < 20 , and with § = % We shall extend
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these results for many more values of p, q and with 6 = 0.9 . Further, we

determine all the solutions of (5.1) for the multi-dimensional case t = 6

( Py v Pg ) = £2,3,5 7,11, 13 ) with § = é .

3

In Section 5.2 we derive upper bounds for the solutions of (5.1). In Sections
5.3 and 5.4 we give a method for reducing such upper bounds in the one- and
multi-dimensional cases respectively, and work them out explicitly for some

examples. Section 5.5 contains tables with numerical data.

5.2. Upper bounds for the solutions.

We assume that the primes are ordered as Py < ... < Py - For a solution
x, vy of (5.1), the finitely many z € N for which =z-x, z-y 1is also a
solution of (5.1) can be found without any difficulty. Therefore we may

assume that (x,y) =1 . Put

X = max ord (x-y)
l<i<s i

Put

c. - 29'S+26.SS+4

1 -max (1

s
1 \
,TEE—EI)'[igzlog pi]~1og(e-1og Ps_l)/(1—5) )

02 = 2-log 2/log P+ 2'C1-log(e-C1-log ps)

THEOREM 5.1. The solutions of (5.1) satisfy X < C2

‘X , then y6 > X -y =y , which contradicts y =2 1 . So
log(x/y) . Then

Proof. If y <

toNie

y > %-x . Put A

0<h<xsy - 1<y 378 ¢ (%~x)_<l_6) (5.2)
X )
By x = max(x,y) = Py , we obtain
0 < A <278 pm-6)-X (5.3)

1

We apply Waldschmidt’s result, Lemma 2.4, to A , with n =3s, q = 2 . Note

2" holds. Since

that the 'independence condition’ [@(/pl,...,/pn):Q}

P > 3 we have Vi = log Py for i 2 2 . Thus
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A > exp [ ~(log X + log(e-log p.))Cy - (1-6)-log p; )
Combining this with (5.3) we find

X < C,-log(e-log ps) + log 2/log Py + C,-log X .

1 1

The result now follows from Lemma 2.1, since C1 > e2 . m}

Examples. With s = 2, 2 <p, < 199, § = 0.9 we have G < 2.30x10%7
. < 1.97x10%°

2 , 33 36
With s =6, 2<p, <13, § =2 we find G < 8.37x10°°, ¢, < 1.35x10

5.3. Reducing the upper bounds in the one-dimensional case.

In this section we work out the examples s = 2, § = 0.9 , and Py. P, TuR
through either the set of primes below 200, or the set of non-powers below
50. We note that for any other set of parameters Pys Pys § the method works

similarly. We prove the following result.

THEOREM 5.2. (a) The diophantine inequality

X X, Xy Xy §
| py” -0, | <min (p;7, p," ) (5.4)

with , P, primes such that p, < < 200 , and
P Py 1P
x,, X, €2, x; > 2, x, > 2, and either § = =

5 Z

X X (5.5)

or § =0.9, min ( pll, p22 ] > lO15

has only the 77 solutions listed in Table I.

(b) The diophantine inequality (5.4) with Pys Py non-powers such that
2 < Py <Py = 50 and conditions (5.5), has only the 74 solutions listed in
Table II.

Remarks. The Tables are given in Section 5.5. In Tables I, II the column

"delta" gives the real number with

X X X X delta
| " - p,” | =min (p;, b, )
1 2 1’ 72

Note that in Theorem 5.2 we do not demand (xl,x = 1 , and in Theorem

)
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5.2(b) we do not demand pl, P, to be primes. The conditions (5.5) are
chosen, since the numerous solutions of (5.4) with § = 0.9 and

1 %2 15
min [ Py Py ] < 10 can be found without much effort.

Proof. Write
A= Xl~log Py - xz-log P, |, X = max(xl,xz)
We assume that
25

p? > 1077, (5.6)

since it is easy to find the remaining solutions. Let log pl/log P, have

the simple continued fraction expansion (cf. Section 3.2)

log py/log py = [ 0, a;, a,, ... ],
and let the convergents be rn/qn for n=1, 2, ... . We may assume that
(Xl’x2) =1 . First we show that %y > Xy hence X = X For if Xy < Xy s

then

199
A= x2-log P, - xl-log Py > X-( log P, - log Py ] > X-log 197 °

and from (5.3) and (5.6) we then infer

0.0101 < 0.0101-X < X-log %g% <a<2%1107/% < 0.0034
which is contradictory. Next we prove that
p¥/1° >3.1-X . (5.7)
X/10 .
Namely, suppose the contrary. Then 2 < 3.1-X , and it follows that

X < 80 . This contradicts 3.1:-X > pﬁ/lo > 105/2 . From (5.3) we infer

log Py 0.1

x
2 2 -X/10 1
’ X ~Togp } < log p P ‘X 5.8
2 2
It follows from (5.7) that
EZ . log Py . 20.1 ' 1 . 1
X log P, log 2 2

3.1-x2 2%
Hence XZ/X is, by Lemma 3.1, a convergent of log pl/log P, , say rk/qk .

From the example at the end of Section 5.2 we see that X < X0 < 1.97X1019
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We find from (3.7) that k < 92.996 , hence k < 92 . Lemma 3.1 further
yields: if (5.3) holds then

q, /10 ; log p,

a > =2 + P —r— (59)
T+l 1 q ,0.1
and if
L A0 e by (5.10)
41 7 P q 0.1 :

then (5.3) holds for (XI’XZ) = (qk,rk) . We computed the continued fraction
expansions and the convergents of all numbers log pl/log Py in the
mentioned ranges for Py, Py exactly up to the index n such that
a4 < 1.97X1019 < a, (cf. Section 2.5 for details of the computational
method). Note that n < 93 . We checked all convergents for (5.9), and
subsequently for (5.10). It is possible, though unlikely, that there is a

convergent that satisfies (5.9) but fails (5.10). We met only one such a

case: Py = 15, P, = 23 , with log 15/1lo0g 23 = [ O, 1, 6, 2, 1, 51, ...} ,
so that ag = 51, T, = 19, q, = 22 . Now, (5.9) holds but (5.10) fails, since
152'2-%5-(1og 19)/20'l =51.4... € [51,53)
. . 0.1 -2.2
We have in this case A = 0.002714... < 0.002771... = 2 -15 , so (5.3)

is true. But log(1522—2319)/10g(2319) = 0.9008... > 6§ , so (5.1) is not true.
This example illustrates that (5.3) is weaker than (5.1). Therefore all found
solutions of (5.3) have been checked for (5.1) as well. The proof is now

completed by the details of the computations, which we do not give here. n|

The computations for the proof of Theorem 5.2 took 35 sec.

5.4. Reducing the upper bounds in the multi-dimensional case.

Now let s > 3 . Put X, = ordp (x/v) for i =1, ..., s . Then
i
X = max[xi| , and
s
A = .Z xi-log P;
i=1

Note that (5.3) is of the form (3.1). Hence by Theorem 5.1 we can use the
method described in Section 3.7 for solving (5.3). We shall do so for the

example t = 6, ({ pl, s Pg y =2, 3, 5, 7, 11, 13} (the first six
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primes), and § = % .

We use small refinements of Lemmas 3.7 and 3.8, devised specially for this

application, as follows. Let notation be as in Section 3.7.

LEMMA 5.3. Let X be a positive number such that

1
2 2
LI =z /(4-n"+(n-1) - IR (5.11)
Then (5.3) has no solutions with for i =1, ..., s
1
10g(7~C-/2/s~le/;-log Py S Xl = X=X . (5.12)

LEMMA 5.4. Suppose that

s
A > 7 Ix ] . (5.13)
i=1
Then
]
Ix,] < log[y-C-/Z/[|A|— ¥ IXiI]J/(1—6)-log p; - (5.14)
i=1
Remark. Lemmas 5.3 and 5.4 are refinements of Lemma 3.8, in that they
differentiate between the different X; . Moreover, Lemma 5.3 has slightly

sharper condition and conclusion than Lemma 3.7.

Proofs (of lemmas 5.3 and 5.4). Analogous to the proofs of Lemmas 3.7 and

3.8, using (5.2) and

Ix |

Py e max(xX,y) = x < 2-[A[_l/2 O
THEOREM 5.5. The diophantine inequality
0 <x-y<y
* 6
in X, y €S = {2 -...-13 | x, € N for i=1, ..., 6} with

i 0
(x,y) = 1 has exactly 605 solutions. Among those, 571 satisfy

ordz(x-y) < 19 , ord3(x-y) < 12 , ords(x~y) < 8 ,
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ord7(x~y) <7, ordll(x-y) <5, ordl3(x-y) <5

The remaining 34 solutions are listed in Table III.

Remark. The upper bounds for ordp (xy) given for the 571 solutions not
i
listed in Table III are chosen such that it takes a reasonable amount of

computer time to find them all by a brute force method. The list of all 605

solutions is too extensive to be reproduced here.

Proof. By the example at the end of Section 5.2 we know that X < X for

0
XO = 1.35x1036 . We apply the method described in Section 3.7. Take
C = 10240 (which is chosen so that it is somewhat larger than Xg ), and
vy =1 . We applied the L3—a1gorithm to the corresponding lattice Fl , and
found a reduced basis € o &g with |g1| > 9.40)(1039 . So Lemma 3.4
yields
L©ry > 27329 40x10%? > 1.66x10%°
P 2 2 37 .
This is larger than /(&-6 +5-1 )'XO = 1.64...x10 , so (5.11) holds with
X1 = X0 . By Lemma 5.3 we find
X< 1og[10240-/2/6-1.35x1036]/%-10g 2 < 1350.4
so X =< 1350 . Next we choose C = 1032, vy=1, and XO = 1350 . The reduced
basis of the corresponding lattice F2 was computed, and we found
|g1| > 2.71)(105 . Hence L(Fz) > 4.79)(104 , which 1is larger than
Y149-1350 = l.64...x104 . Hence Lemma 5.3 yields for all i =1, ..., 6
Ix.| < log(10%%./2/6-1350) /% 1og p
i 2 i’
and it follows that
|x, 1 = 187 , x,] =118 , |x,| = 80 ,
1 2 3 (5.15)
|x4] < 66 , |x5| < 54 , |x6| < 50
12 4
Next we choose c = 1077, v = 10 . We use Lemma 5.4 as follows. If
| A} > 106 then (5.13) holds by (5.15), and Lemma 5.4 yields
Ix,| =67 , |x,| €42, |x,| <29,
1 2 3 (5.16)
]x4| < 24, |x5| <19 , |x6| < 18
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All vectors in the corresponding lattice F3 satisfying (5.15) and
1Al < 106 have been computed with the Fincke and Pohst algorithm, cf.
Section 3.6. We omit details. We found that there exist only two such

vectors, but they do not correspond to solutions of (5.1). Hence all

solutions of (5.1) satisfy (5.16). Next, we choose C = 108, vy o= 104 . If
Al > 5X10S then Lemma 5.4 yields

|x,] =42, |x,| <27, |x,| =18,

1 2 3 (5.17)

|x4| < 15 , |x5| <12 , |x6[ < 11
There are 143 vectors in the corresponding lattice FA satisfying (5.16)
and |A| =< 5><105 . Of them, 2 correspond to solutions of (4.1), namely those
with

(Xl""’XG) =( 7, -5, 3, -9, -3, 8), Xx=1257674 ,

(Xl”"’XG) = (=10, 10, -6, 5, -6, 4) , X = 144817

Both also satisfy (5.17). Hence all solutions of (5.1) satisfy (5.17). At
this point it seems inefficient to choose appropriate parameters C, vy , and
a bound for |X| to repeat the procedure with. But the bounds of (5.17) are

small enough to admit enumeration. Doing so, we found the result. |

Remark. Theorems 5.2 and 5.5 find applications in solving other exponential
diophantine equations, see Stroeker and Tijdeman [1982], Alex [l985a],

[1985b], Tijdeman and Wang [1987], and Section 6.4 of this thesis.

Remark. The computation of the reduced basis of T took 113 sec, where we

applied the L3—a1gorithm as we described it in Section 3.5, in 12 steps. The
direct search for the solutions of (5.17) took 228 sec. The remaining
computations (computation of the log p; up to 250 decimal digits, of the
reduced basis of F2 , and of the short vectors in F3 and F4 ) took 8 sec.
Hence in total we used 349 sec.

5.5. Tables.
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Table I. (Theorem 5.2(a)) : see p. 114-115.

Table 11, (Theorem 5.2(b)) : see p. 116-117.

Table I1I1 . (Theorem 5.5).

v, s vy A \ V X—y
b N R 17 71561 17 71470 91

0 5 L6 0 17 71875 17 71561 314
A2 2 1 30 20 97152 20 96325 827

R K . T A 31 88646 31 88185 461
0 0 % 10 57 67168 57 64801 2367
6 2 1 o6 3 88 58304 88 57805 499

2 S 1 240 143 48907 143 48180 727
mos 02 143 50336 143 48907 1429

T e e I 288 29034 288 24005 5029
2 I T R 293 62905 293 60128 2777
31 A N A 337 92000 337 87663 4337

1 19 4 a0 35156250 351 53041 3209
33 0 4 2 7 627 52536 627 48517 4019
2% 1L 0 5 3 0 671 10351 671 08864 1487
31310 2 000 78125000 781 21827 3173

8§ 2 10 41 878 95808 878 90625 5183
25 -4 0 s 0 1006 63296 1006 56875 6421
6 1 -2 —6 0 7 1882 45551 1882 38400 7151
§ 13 0 3 -2 3 1929 14176 1929 13083 1093
P13 -3 7 200 1992 97406 1992 90375 7031
e e Y 4392 39619 4392 30000 9619
-4 2 N 2 6 0 7812 58401 7812 50000 8401
16 -3 S [ S 14336 00000 14335 62273 37727
§ 8 0 -8 3 2 14758 24779 14757 89056 35723
-5 -2 =5 11 0 -3 19773 26743 19773 00000 26743
~25 7 10 -2 s 40600 88955 40600 86272 2683
20 1’ -9 -2 0 48828 12500 48827 86447 26053
1419 -2 41— 1 27848 76137 1 27848 44800 31337
24 -1 -2 12 -1 0 138412 87201 1 38412 03200 84001
-5 5 10 0 1 8§ 26103515625 2 61033 83072 1 32553
2 -4 -9 37 -2 26736398612 2 67363 28125 70487
18 7 0 —13 0 2 968892 08832 9 68890 10407 1 98425
7 -5 3 =9 -3 8 1305 16915 36000 1305 16881 72831 33 63169
~10 10 —6 5 —6 4 2834 49801 04623 2834 49760 00000 41 04623
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CHAPTER 6. THE EQUATION X *+ Y = Z IN S-INTEGERS.

The results of this chapter have been published in de Weger [19876].

6.1. Introduction.

Let S be the set of all positive integers composed of primes from a fixed
finite set { Py -y Py } , where s = 3 . This chapter is devoted to the

diophantine equation
X +y=2z (6.1)

in %, y, z € § . Without loss of generality we may assume that x, y, z are

relatively prime. For any a € S we define

m(a) = max ord_(a)
l<i=<s i
It was proved by Mahler {[1933] that (6.1) has only finitely many solutions,
but his proof is ineffective. An effective version, i.e. an effectively
computable upper bound for m(x-y-z) for the solutions x, y, z of (6.1),
can be derived from the results of Coates [1969], {1970] and Sprindguk
[1969], since (6.1) can be reduced to a finite number of Thue equations. See

also Chapter 1 of Shorey and Tijdeman [1986].

We derive an explicit upper bound in Section 6.2. Section 6.3 is devoted to
some details of the p-adic approximation lattices on which the reduction
method of Sections 6.4 and 6.5 are based. In Section 6.4 we give a method of
solving (6.1) in the one-dimensional case s = 3 . This method is based on
the reduction procedure given in Section 3.10. As an example we find all the
solutions of the slightly more general equation x * y = w-z , where x, y, z
are powers of 2, 3 or 5, and weZ , |w| < 1000000 , (w,z) =1 . 1In
Section 6.5 we give a procedure for solving (6.1) in the multi-dimensional
case s > 4 , based on the reduction procedure described in Section 3.11. We
work out the example { Pys -+ Pg y=4{(2, 3,5, 7,11, 13 } , and actually

determine all the solutions. This generalizes the result of Alex [1976], who
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gave a complete solution of (6.1) for the case { Py -oos Py )

{ 2, 3, 5, 7 ) by elementary arguments. See also Rumsey and Posner [1964]
and Brenner and Foster [1982]. We conclude in Section 6.6 with some remarks
on the Oesterlé-Masser conjecture, also known as the 'abc’-conjecture, which
is related to equation (6.1). In particular, our method of solving (6.1)
leads to a method of finding examples that are of interest with respect to

the abc-conjecture. Finally, we give tables in Section 6.7.
6.2. Upper bounds.
We give in this section an upper bound for the solutions of (6.1), based on

lemma 2.6 (cf. Yu [l987a]). Note that in our paper de Weger [19873] we used

the result of van der Poorten [1977] instead of Yu's.

We introduce a lot of notation. Assume that Py < ... < P, - Let 9 be the
smallest prime with 45 } pi-(pi~1) for i=1, ..., s . Put
S
t=1(2s/3], P=Jlp, , q=maxgq, ,
- i . i
i=1 i
Cl(2,t) and a; as in lemma 2.6 with n = t ,
1.t
@1 (245 )

t+5/2 2.t 2
/2.4% % (g-1) -1og? (t-q) -max

t
U=¢(2,8)-a-t 3 oy
i (log pi)
¢ log ps
(log p) - ( log(4-log p) + —g ) .

C1 =U/6-t , C2 = U-log 4 ,
s
V. = max(l,log p.,) for i =s-t+l, ..., s, Q= ﬂ v. ,
i i . i
i=s-t+1
9-t+26 _t+4
C3 =2 -t -ﬂ-log(e-Vs_l) )
C, = max (7.4, (C -log(P/p;)+C;]/log p; ) ,

(@]
I

5 [02-1og(P/p1)+c3-1og(e-vs)+o.327j/1og Py

Q
i

6 max [ CS’ (Cz~log(P/pl)+log 2)/log p1 ] s

¢, =2-(C +C,logC, ] ,
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P
s
CS = max [ Py log(2~(P/p1) )/log Py C2+C1-log C7, C7 )

Now we state the main result.
THEQREM 6.1. The solutions of (6.1) satisfy m(x-y-z) < C8

Proof. 1If we consider instead of (6.1) the equivalent equation

then we may assume that x-y has at most t prime divisors, p, , ..., p.

say. Suppose first that m(x-y) =< Py - Then

P
PT(Z) <z < 2-max(x,y) < 2-(B/py) .

hence

P
m(x-y-z) < max ( P, 1og[2~(P/p1) S]/log Py ) < C8

Next suppose that m(x-y) = and m(z) = 2 . Then for some p = p, ,
PP y Py P;

- - +* _ - X
m(z) ordp(z) ordp( 5 1) ordp(logp(y))

t .

Put x/y = [|p 3. Then m(x-y) = max ]xi | . We apply Lemma 2.6 (Yu's
i=1 7] l<j=<t 7j

lemma) with n = t, BO = Bn = B’ = B = m(x'y) . Since m(x-y) = P and

t > 2 we have
3
W = max {( log(1+ZTE~B), log B, log p ) = log B
Note that Cl(p,n) is maximal for p = 2 . We obtain

m(z) < C,-log m(x-y) + C (6.3)

1 2

Obviously (6.3) is also true if m(z) < 2 . If in (6.2) the plus sign holds,

then

m(x-y)

m(z) > z > max(x,y) = p1

(B/p)

By (6.3) and C3 > 0 it then follows that
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m(x-y) < C -log m(x-y) + C (6.4)

4 6

Next suppose that in (6.2) the minus sign holds. Then we apply Lemma 2.4 to

prove (6.4) for this case, as follows. Suppose (6.4) is false. Then

Cl-log m(x~y)+C2

m(z)
Yl (B/py) (B/p))
x X max(x,y) ~ pm(x~y) C4~log m(x~y)+C6
1 Py
which is less than % , by the definition of C4 and C6 . Hence

C,-log m(x-y)+C
/o ?

Y . A . .
Ilog 2| < (2-log 2)-] £ - 1 | < (2-1og 2) )
1

On the other hand, Lemma 2.4 yields
|log §| > exp [ -C,-(log m(x-y) + log(e-V))) )
Thus we obtain
m(x-y)-log Py < log(2-log 2) + (C1~log m(x-y)+C2)-log(P/p1)
+ C3~(10g m(x-y) + 1og(e-Vs)) < (log pl)-(ca~log m(x~y)+C6)

This contradicts our assumption that (6.4) if false. Consequently (6.4) is

true in all cases. Now, by C, > e2 , Lemma 2.1 yields m(x-y) < C

4 7 and
(6.3) then yields m(x-y-z) < C8 R m}
17
Examples. If s = 3, { Py, Pys Py }y = {2, 3, 5} then C8 < 3.98x10
If s =6, (P, ....bg ) =123 5 7 11,13 ) then Gy < 5.60x10%7

6.3. The p-adic approximation lattices.

As in the proof of Theorem 6.1 we consider (6.2) instead of (6.1). Let p be

any of the primes Py, o0 Pg o We may assume that p ) x-y . Rename the
other primes as Pgr -0 Py o such that ordp(logp(po)) is minimal. For
i=1, ..., s=2 put (cf. Section 3.11)
o]
9, = — log (p.)/log (p,) = ) u, ,- t

121



where ui,L e { 0, 1, ..., p-1 } . The 01 take the place of the 6i of
Section 3.11. Then it is clear from Section 3.11 how to define the p-adic
approximation lattices F# for u € NO . Put
s-2
A = lélxi-ﬁl - Xq

Then Lemma 3.13 yields

_ —B
F# { (xl,...,xs_z,xo) | |A|p <p }

s=2 X, -(#+#O)
=Rk %) | |10gp[iEOPi ]Ip <p ),

where By = ordp(logp(po)) . In Section 3.13 we studied the set

" §-2 X, —(utpg)
- +
T,o= UG Xg 9% | | T py” * l, =p ),
i=0
which is a sublattice of F” . In Lemma 3.17 we showed how a basis of T

can be found from a basis of F# . In practice this is very easy, especially
if for p = 5 it happens to be possible to choose Py such that not only
ordp(logp(po)) is minimal, but also Py is a primitive root (mod p)

Then, using the notation of Lemma 3.17 (with b as the last element of the

=0
basis), choose ¢ = Py (mod p) . Then k(ho) = 1 , and it follows that
b! =b. for i=1, ..., s-2 . By b. = [0,.A.,l,...,0,6§u))T we have
i i i i
o (¥ k(b.) pp
1 - i (mod O)
Pi PO ¢ P
(o 28
1f P, = po1 (mod p) , then it follows that
u-1
*
v, = a, + 6§#) =a, + Z u, (mod (p-1)/2) for 1 =1, .., s-2 ,
i i i i i 4
{=0
¥~ (p-1)/2
Yo = (P-1)/
Lemma 3.14 (with ¢ = 0, cy = 1 ) now yields: if
ur’ Y(s-1)-X 6.5
(r) > /(s-1)X (6.5)

then (6.2) has no solutions with

b+ Hy < ordp(z) < m(x-y-z) < X1 . (6.6)

122



6.4. Reducing the upper bounds in the one-dimensional case.
In Section 3.10 we have described how an upper bound for the solutions of
(6.1) in the case s = 3 can be reduced. We shall apply that method in this

section to the following problem.

THEOREM 6.2. The diophantine equation

xty=wz, (6.7)
X X
where x = p.0 ., y =pit . oz =p% ., (p.ppy) = (2.3.5), (3,2,5) or
0 1 0'"1
(5,2,3) , Xy Xy, U € NO , wel , jw] < 106 , and p } w , has exactly
291 solutions for p = 2 , 412 solutions for p =3 , and 570 solutions
for p =5 . In Table I all solutions with u = 3 are given. The solutions
with u < 2 satisfy X < 14, Xy <9 for p=2, X, < 23, Xy < 10 for
p=3, and Xq = 25, ® = 15 for p=>5

Remark. It is easy to find all solutions of (6.7) with u =< 2 . The Tables

are presented in Section 6.7.

Proof. Put X = max ord (x-y-z) . The example at the end of Section 6.2
p=2,3,5 17
shows that in the case |w| =1 we have X < 3.98x10 . It can be checked

without difficulties that the effect of the w with |w| =< 106 in the proof

of Theorem 6.1 can be neclected (it disappears in the rounding off), so that

for the solutions of (6.7) also X < XO = 3.98)(1017 holds. Put
Yo N1
x/y =Py Py » 0= = log (p))/log (py)

*
Note that ¥ 1is a p-adic integer. Define the lattices Fp, F# as in Section

6.3, so F# is generated by

* *
For p =2, 3 we have P# = F# , and for p =5 a basis of P“ is

where ~y = 0 if 6(“) is odd, vy =1 if 0(#) is even . Using the
algorithm given in Section 3.10, Fig. 3, we can compute a basis (B RRCIA of

* *
F# that is reduced in the sense that |c = L(F#) . We did so, with u as

1!
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in the following table.

P Py Py | By H 7 gl > us W Iyl = Iy I =
2 3 s | 2 143 2.68x10%Y 144 10%.2M% 114 78
3 2 5| 1 91 2.32x10°Y 91 10%.3%! 182 78
s 2 3] 1 65 0 5.28x10%2 65 10°.5%° 189 119

The values of 6<“) can be found in Table III. Making an exception to our

policy, we give the reduced bases of the F: below.
p=2: 10 00000 00100 10001 10110 01110 01101
00001 11101 00101 00100 11100 01111 11010 00011
- 1 00010 00110 01000 01011 01110 00010
00101 11000 00000 11100 01111 01011 10111 00001
10 11011 10000 01011 01101 11000 00111
11001 10100 11011 00000 11111 10110 10110 00001

10 01110 11101 10111 11000 00100 10101
00111 00001 10101 00110 10011 00111 00101 10101

p=23: - 102 01121 02221 00210 12120 20020 22222 10212 20222 }

21002 00122 21100 11102 22102 20001 11222 02212 21011

-10 12210 12111 01102 02010 12112 12210 21122 21011 20102
L — 2 22021 11012 01000 12021 00211 12221 22121 21220 12122 ‘
p=>5": - 211 32230 21042 22023 30141 33034 21420

- 22104 43102 43111 03114 30134 23410

- 414 20001 42202 42210 34043 20120 00432

340 34003 02404 12120 03412 22030 32211 }

From this we found the lower bounds for |gl| given above. They are all
larger than /2-3.98x10'7 . Hence (6.5) holds for X, = X, . and then we
infer from (6.6) that u < u + Bo 1 , and |w]-z < W as shown in the
table above. We now find the new upper bounds for |yo|, |y1| as follows. If
in (6.7) the minus sign holds, then, on supposing that min(x,y) > w10/9 , we

infer
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| x -y | = |w|l-z=WKL min(x,y)o'9
. : . 0.9 :
By Theorem 5.2(a), the inequality | x - y | < min(x,y) has no solutions
with min(x,y) > W , since W > 10(‘9 . Hence min(x,y) =< w10/9 , and we
infer
max(x,y) < min(x,y) + |w|-z < w10/9 + W .

If in (6.7) the plussign holds, then this inequality follows at once. So now

the bounds given in the above table for 1y0], tyll follow from

0/9

|yi|-1og 1 < log max(x,y) =< log(wl +W)

We repeat the procedure with u as in the following table.

Pl s le;l > /2%, < us l ol =yl <
2 | 16 167.7  161.3 17 10%.2Y 31 21
3| 13 535.8  257.4 13 10°.313 49 21
s| 7 1 276.1  267.3 7 10857 49 31

The numbers are now so small that the computations can be performed by hand.

*
For example, for p = 5 , the lattice F7 is generated by

1 0

~45607 0 156250

1o
I
o
|

and a reduced basis is

185 -394 )

g, = y & T

1 205 0 408
We find upper bounds for u and W as given in the above table. In all
three cases, w10/9 < 1015 . On supposing min(x,y) > 1015 we infer

| x —y | = |wl-z<=WKL 1015'0'9 < min(x,y)o'9

. . . 0.9

By Theorem 5.2(a) we see that the inequality | x - y | < min(x,y) has
only two solutions: (x,y) = (265,528), (284,353) . However, both have
| x -y | > 1015.0'9 . So we infer min(x,y) =< lO15 , hence by
max(x,y) =< 1015 + W we obtain the bounds for [y0|, ]y1| as given above.

These bounds are small enough to admit enumereation of the remaining cases. O

Remark. The computer calculations for the above proof took less than 1 sec.
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6.5. Reducing the upper bounds in the multi-dimensional case.
In Section 3.11 we have described how an upper bound for the solutions of
(6.1) in the case s > 3 can be reduced. We shall apply that method in this

section to the following problem.

THEQOREM 6.3. The diophantine equation

X +y=2 (6.8)
1 6
in x, y, ze€esS=1{2"-...-13 | X, € NO for i =1, ..., 6 )} with
(x,y) =1 and x <y has exactly 545 solutions. Of them, 514 satisfy

ordz(x-y-z) < 12 , ord3(x-y-z) <7, ords(x-y-z) <5,
ord7(x~y~z) < 4 ordll(x-y-z) <3, ord13(x-y~z) < 4 .

The remaining 31 solutions are given in Table IIL.

Remark. From Theorem 6.3 it is not much effort to find all 545 solutions of

(6.8).

Proof. In the example at the end of Section 6.2 we have seen that m(x-y-z)

< X0 = 5.60><1027 . With the notation of Section 6.3 we choose the following
parameters.
* * * * *

p PO pl Pz P3 Pz‘ l‘o y 'YO ’Yl 72 '13 74

2 3 5 7 11 13 2 605

3 2 5 7 11 13 1 385

5 2 3 7 11 13 1 275 2 0 1 1 1

7 3 2 5 11 13 1 220 3 0 1 1 0

11 2 3 5 7 13 1 165 5 -2 0 1 1

13 2 3 5 7 11 1 165 6 2 1 2 3
We computed the six values of the ﬂgp) for i =1, 2, 3, 4 (and give them

i
*
in Table III), and the reduced bases of the six lattices Fp , by the

L3—a1gorithm. Thus we obtained:
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p L(F:) > je1/6 > ord (x-y-z) <
2 4.70x10°° 606
3 1.15x10%¢ 385
5 6.27x10°7 275
7 3.17x10°° 220
11 5.74x10°3 165
13 1.73x10°° 165

*
These lower bounds for L(F“) are all larger than /5-5.60x1027 (note that

we have a very large margin here, we could have taken the u's probably

about 20% smaller). So we apply Lemma 3.14 for X1 = XO = 5‘6O><1027 . For
every p we thus find ordp(z) < u + Hg - Since equation (6.2) is invariant
under permutations of x, y, z , we even have ordp(x'y-z) < u + Bo » as

shown in the above table. Hence m(x-y-z) < 606

We repeated the procedure with XO = 606 and p as in the following table.
*

After computing the reduced bases of the six lattices Fp we found the

*
following data. Note that in all cases L(F“) > /5-606

* * * * * *
P 7 To Y1 Yo Y37, f(F#) > ordp(X‘Y'Z) <
2 66 1909 67
3 42 2304 42
5 30 2 0 1 1 3417 30
7 24 3 1 0 -1 1 2391 24
11 | 18 5 0 2 -2 1 1443 18
13 18 [ 0 -1 -1 2 3196 18

Hence m(x-y-z) < 67 . Next, we repeated the procedure with XO 67 , and pu

as in the following table. We found

* * * * * x
P B T Y1 Yo Y3 Y L(F#) > ordp(X~y-Z) <
2 55 364 56
3| 35 301 35
5 | 25 2 1 1 1 0 622 25
7| 20 3 1 -1 1 0 693 20
11 15 5 1 2 -2 -2 192 15
13 15 6 1 0 3 2 658 15

Hence m(x-y-z) < 56
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To find the solutions of (6.2) with ordp(va-z) below the bounds given in
the above table, we followed the following procedure. Suppose that we are at

a certain moment interested in finding the solutions with ordp(x-y~z) < f(p)

where f(p) 1is given for p =2, ..., 13 . Choose p , and p < f(p) - Bg o
*
and consider the lattice Fu for these values of p, p . If a solution
X, Yy, 2 of (6.2) exists with ordp(z) > p o+ By then the wvector
T . . ..
[ Xpv s X, Xg ] with X, = ordp'(x/y) for i =0, ..., 4 , is in the

lattice. Its length is bounded by /[Ekp0)2+...+f(p4)2] . All vectors in F:
with length below this bound can be computed by the algorithm of Fincke and
Pohst, as given in Section 3.6. Then all solutions of (6.2) corresponding to
lattice points can be selected. Then we replace f(p) by u + By = 1 , and
we repeat the procedure for newly chosen p, u

We performed this procedure, starting with the bounds for ordp(x-y-z) given
in the above table for f(p) , and with p, m as in the table on the next

page. Here, # stands for the number of solutions of (5.2) found at that

stage. At the end we have f(2) = 4 , f(p) =1 for p =3, ..., 13 . The
remaining solutions can be found by hand. 8]
Remark. Theorems 6.2 and 6.3 have applications in group theory (cf. Alex

[1976])). We use Theorem 6.3 in Section 7.2.

Remark. The computer calculations for the proof of Theorem 6.3 took 438
sec., of which 412 were used for the first reduction step. In this first step
we applied the L3—a1gorithm in 11 steps (cf. Section 3.5), which cost on

average about 60 sec. per lattice. The remaining 50 sec. were mainly used for

(;4),S

the computation of the 24 91

6.6. Examples related to the abc-conjecture.

Let x, vy, z be positive integers. Put

6= [ »p
plxyz
p prime

For all x, y, z with (x,y) =1 and x +y =z we define
c(x,y,2z) = log z / log G

Recently, Oesterlé posed the problem to decide whether there exists an
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2 44 - 2 13 1 2 10 2
3 28 - 2 12 2 2 9 3
5 20 - 2 11 2 2 8 6
7 16 - 3 13 - 2 7 15
11 12 - 3 12 - 2 6 16
13 12 - 3 11 - 2 5 26
2 33 - 3 10 1 2 4 31
3 21 - 3 9 1 2 3 44
5 15 - 3 8 1 3 6 5
7 12 - 3 7 6 3 5 8
11 9 - 5 9 - 3 4 16
13 g - 5 8 - 3 3 35
2 22 - 5 7 - 3 2 54
3 14 - 5 6 - 3 1 87
5 10 - 5 5 6 5 4 1
7 8 - 7 7 - 5 3 5
11 6 - 7 6 - 5 2 18
13 6 - 7 5 1 5 1 36
2 21 - 7 4 4 7 3 -
2 20 - 11 5 - 7 2 6
2 19 - 11 4 1 7 1 18
2 18 - 11 3 4 11 2 1
2 17 - 13 5 - 11 1 8
2 16 - 13 4 - 13 2 -
2 15 - 13 3 1 13 1 4
2 14 -

absolute constant C such that c¢(x,y,z) < C for all x, y, z . Masser
conjectured the stronger assertion that c(x,y,z) <1 + ¢ , when =z exceeds
some bound depending on ¢ only, for all e > 0 . For a survey of related

results and conjectures, see Stewart and Tijdeman [1986] and Vojta [1987].

It might be interesting to have some empirical results on c(x,y,z) , and to
search for x, y, z for which it is large. From the preceding sections it
may be clear that such x, y, z correspond to relatively short vectors in

appropriate p-adic approximation lattices.
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As a byproduct of the proofs of Theorems 5.5 and 6.3 we computed the value of
¢(x,y,z) , corresponding to many short vectors that we came across in
performing the algorithm of Fincke and Pohst. All examples that we found with
c(x,y,z) =2 1.4 are listed below. Our search was rather unsystematic, so we
do not guarantee that this list is complete in any sense. The largest value

for c¢(x,y,z) that occured is 1.626 , which was reached by

X = 112 =121, y = 32-56~73 = 48234375, z = 221‘23 = 48234496

This example was found on September 20, 1985, and has not yet been beaten, to

the author's knowledge.

X y z c(x,y,2)
112 32.50.73 2?1 .93 1.62599
1 2.3’ 547 1.56789
73 310 2199 1.54708
52.7937 743 218,37 152 1.49762
112 3%.13 it 53 1.48887
37 2to 385 1.48291
27 .52 7841 13° 1.46192
1 2°.3.52 7% 1.45567
21%.13.103 74 31153912 1.45261
1 21253 3°.72.43 1.44331
1 2437 547 58.72 1.43906
2105 5/ 3813 1.43501
3 53 2/ 1.42657
5 3t 210,173 1.41268

These results do not seem to yield any heuristical evidence for the truth or

falsity of the abc-conjecture.

6.7. Tables.
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Table I, (Theorem 6.2.)

p=2py=3p =5

Nl

Xg Do AW Py sign u w
2 9 10 9765625 14 610351
10 59049 10 9765625 14 —~ 606661
4 81 12 244140625 -1 9 — 476837
6 729 10 9765625 BRI ~305153
2 9 8 390625 103 48827
6 729 8 390625 103 —48737
10 59049 8 390625 ~1 3 —41447
14 4782969 10 9765625 R 38927
4 818 390625 14 24409
0 8 390625 1 s 12207
% 6561 & 390625 16 — 6001
0 16 15625 13 ~1953
4 81 6 15625 13 1943
8 6s61 6 15625 13 ~1133
6 29 6 15625 14 931
2 9 4 625 13 —77
2 9 6 15625 18 6l
0 4 625 14 ~39
4 g1 4 625 s 17
0 2 25 -1 3 -3
> 9 2 25 1 4 .
! I 5 13 ]
1 I3 125 17 1
2 9 0 | 13 1
3 7 5 s 1
4 81 0 I 14 5
4 81 2 25 13 7
6 729 2 25 16 1
6 29 4 625 103 13
3 73 125 13 19
5 43 3 125 14 23
5 431 5 13 31
7 2087 S 3125 16 83
6 729 0 i 13 91
7 2187 I 5 14 137
1 177147 1 5 110 173
3 7S 3125 14 197
8 6561 0 1 s 205
7 287 3 125 13 289
8 6561 4 625 “1 4 37t
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Table I. (cont.)

Xg Py’ X Py sign u w
1 3 5 3125 1 3 391
5 243 5 3125 1 3 421
9 19683 3 125 1 5 619
8 6561 2 25 -1 3 817

10 59049 6 15625 —1 5 1357
5 243 7 78125 { 5 2449
9 19683 1 5 1 3 2461
9 19683 S 3125 1 3 2851

10 59049 2 25 —1 4 3689

12 531441 4 625 —1 7 4147
1 3 7 78125 1 4 4883
9 19683 7 78125 | 4 6113

13 1594323 7 78125 1 8 6533

10 59049 4 625 —1 3 7303

10 59049 0 1 —1 3 738t

12 531441 8 390625 -1 4 8801
3 27 7 78125 1 3 9769
7 2187 7 78125 1 3 10039

il 177147 5 3125 l 4 11267
3 27 9 1953125 I 7 15259

11 177147 3 125 1 3 22159

1t 177147 7 78125 1 3 31909

12 531441 0 1 —1 4 33215

12 531441 6 15625 —1 3 64477

12 531441 2 25 -1 3 66427

11 177147 9 1953125 1 S 66571

13 1594323 3 125 1 4 99653
7 2187 9 1953125 1 4 122207

14 4782969 2 25 —1 S 149467

13 1594323 1 S 1 3 199291

13 1594323 5 3125 1 3 199681
1 3 9 1953125 1 3 244141
S 243 9 1953125 1 3 244171
9 19683 9 1953125 1 3 246601

14 4782969 6 15625 —1 4 297959

13 1594323 9 1953125 t 3 443431

15 14348907 5 3125 1 S 448501

14 4782969 8 390625 —1 3 549043

14 4782969 4 625 —1 3 597793

14 4782969 0 1 —1 3 597871

16 43046721 0 1 —1 6 672605
9 19683 11 48828125 1 6 763247

15 14348907 1 S 1 4 896807

Table continued



Table I, (cont.)

p=3po=2,p =5

X Py X Py sign u w
14 16384 10 9765625 -1 4 — 120361
9 512 9 1953125 -1 3 — 72319
4 16 8 390625 —1 3 — 14467
12 4096 6 15625 —1 3 —427
7 128 S 3125 -1 4 -37
2 4 4 625 -1 3 -23
1 2 2 25 1 3 1
5 32 1 5 -1 3 1
6 64 3 125 1 3 7
11 2048 4 625 1 5 11
9 512 0 1 1 3 19
10 1024 2 25 —1 3 37
3 8 6 15625 1 4 193
15 32768 3 125 -1 4 403
14 16384 i S 1 3 607
17 131072 7 78125 —1 3 1961
16 65536 5 3125 1 3 2543
8 256 7 78125 1 3 2903
19 524288 2 25 1 4 6473
18 262144 0 ] —1 3 9709
23 8388608 1 S -1 6 11507
13 8192 8 390625 1 3 14771
22 4194304 8 390625 —1 5 15653
10 1024 11 48828125 1 7 22327
18 262144 9 1953125 t 4 27349
20 1048576 4 625 -1 3 38813
0 1 9 1953125 1 3 72338
21 2097152 6 15625 1 3 78251
5 32 10 9765625 1 3 361691
24 16777216 3 125 1 3 621383
23 8388608 10 9765625 1 3 672379
26 67108864 7 78125 1 4 829469
p=5po=2,p =3
X poo X, N sign u w
12 4096 16 43046721 -1 3 — 344341
S 32 15 14348907 -1 3 — 114791
7 128 1 3 —1 3 1
6 64 8 6561 1 3 53
14 16384 2 9 —1 3 131
13 8192 9 19683 1 3 223
20 1048576 10 59049 1 3 8861
21 2097152 3 27 -1 3 16777
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CHAPTER 7. THE SUM OF TWO S-UNITS BEING A SQUARE.

7.1. Introduction.

Let Pys --os Py (s 21) be distinct primes, and let S be the set of
positive rational integers which have no prime divisors different from the
P; - A rational number is called an S-unit if its absolute value is a

quotient of elements of S . Thus the set of S-units is

*1 *s
{ £ Py .- Py | x; € Z for i=1, ..., s}

We study the diophantine equation

in x, y S-units, and z € @ , where the set of primes pl, RN ps is
given. We show how to find all solutions of this equation, using the theory
of p-adic linear forms in logarithms, and a computational p-adic diophantine

approximation method. We actually perform all the necessary computations for

solving the equation completely for { Pys o0 Py y=(2, 3, 5, 7))
We start with getting rid of the denominators. Let x, y, z be a solution.
There is a d € S such that |d-x], |d-y|] € § . Put d = d1~d§ , Where
dl’ d2 € S and d1 squarefree. Then
d,-dx +d,-d-y = (d,-d -z)2
1 14y 1°% ’
which has the same form as x + y = z2 , but now |dl~d-x|, |d1-d-y| e Scz
and dl-d2~z € 7 . Without loss of generality we may therefore study
x +y =22, (7.1)
where
x€esS, tyes, zel,
xzy, z>0, (7.2)

(x,y) 1is squarefree

We shall prove the following results.
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THEOREM 7.1. Let P+ - Py be given. There exists an effectively
computable constant C , depending on Pys -oos Py only, such that any
solution X, y, z of equation (7.1) with conditions (7.2) satisfies

max (x,ly|,z) < C

THEOREM 7.2, Let { Py ---s Py )y = {2, 3, 5, 7} . Equation (7.1) with

conditions (7.2) has exactly the 388 solutions given in Table I.

Remarks. 1. The Tables are given in Section 7.9. We stress that the aim of
this chapter is not only to prove these theorems, but to show as well that

for any given set of primes ({ Pys -+» Py )} a result similar to Theorem 7.2

can be proved along the same lines, in a more-or-less algorithmic way.
2. Equation (7.1) with conditions (7.2) can be seen as a further

generalization of the generalized Ramanujan-Nagell equation

x + k = Py --c°P s (7.3)

(cf. Chapter 4), namely by taking k| € S arbitrary instead of k € Z
fixed. The method of this chapter to solve (7.1) is also a generalization of

the method of Chapter 4 to solve (7.3).

Equation (7.1) can be transformed into a number of Pell-like equations. Put

where D, u € S , and D 1is squarefree. There are only 28 possibilities

for D . Now, (7.1) is equivalent to a finite number of equations
z- - Du” =y (7.4)

in wues , *yes | z € Z , with z >0 and (u,y) = 1 . We treat
equation (7.4) by factorizing its both sides in the field K = Q(/D) . When

dealing with equation (7.4) we allow z and u to be negative.

7.2. The case D=1

First we consider the special case D =1 . Then (7.4) is equivalent to
z+u-=y

z-u=y,
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where = 'y, , and € S , + € S , and > . Subtraction
y yl 2 y1 y2 71 ¥y
yields

2:u = Yy~ Yy o (7.5)

where now all variables u, Yi» Y9 (apart from the sign) are in S , hence

in Z . By (u,yl) = (u,yz) = 1 , equation (7.5) is of the form a + b = c ,

or 2-a+ 2:b = 2.-¢c , where a, b, ¢ are composed of primes 2, Py, ---s Py
only, and (a,b) =1, a=2=b > 0 . In Chapter 6 it was shown how to solve
such an equation a + b = ¢ . For our ( pl, e, ps y = (2, 3, 5, 7)) we

have the following result.

LEMMA 7.3. Let { Py ---s P Yy = (2, 3, 5, 7 ) . Equation (7.1) with
conditions (7.2) and D =1 has exactly the 95 solutions given in Table 1

with D =1

Proof. From Theorem 6.3 it follows that a + b = ¢ with a, b, ¢ € S ,
(a,b) =1, a=b has exactly 63 solutions, that are easy to compute. Each
of these gives rise to three possibilities for (7.5):

if 2| a then (u,y,y,) = (a,b,c), (b,2¢,2a), (c,2a,~2b),

if 2 | b then (u,yl,yz) = (a,2b,2c), (%b,c,a), (c,2a,-2b),

I

if 2 | ¢ then (u,yl,yz) (a,2b,2c), (b,2c,2a), (%c,a,-b).

Of the thus found 189 possibilities, the 95 ones given in Table I with D =

1
satisfy x =y and z > 0 , whereas the others don't. 0

This completes our treatment of the case D =1

7.3. Towards generalized recurrences.

From now on, let D > 1 . Put K = @(/D) . Let o : K > K he the
automorphism of K with o(/D) = —/D . For any number or ideal X in K we
write X' for o(X) , for convenience.

Let pi for i =1, ..., s be the prime ideal in K such that

ordp (pi) >0 . If Py splits in UK , this is well defined if a choice has
i

been made from the two possibilities for D (mod pi) . Put for a solution
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z, u, y of (7.4)
x =z + u-yD .
Then y = x-x' , and by (u,y) =1 we have
min (ordpi(u), ordpi(y) ) =0. (7.6)

Equation (7.4) leads to the conjugated ideal equations

s a; bi
CONE N I P
i=1
(7.7)
s a; bi
x = T»; "p;
i=1
where a;, bi e WO , and bi =0 if pi = pi We need the following

auxiliary lemma.

LEMMA 7.4. If € € K and ordp({) - ordp(ﬁ') for a prime p , then

1A

ord ord =&
p(5) p(€ £Y)
Moreover, if p =2 and D =1 (mod 8) , then

ord,(§) = ord,((§-¢")/2) ,

and, if p =2 and D

2, 3 (mod 4) , then

ord, (§) < ord, ((§-£')/2/D) + ; .

Proof. This is an easy exercise, which we leave to the reader. g

We distinguish, as usual, three cases for the factorization of the prime P
in K : it may split, ramify or remain prime. See Borevich and Shafarevich

[1966], section III1.8.

(i). P; remains prime in K . Then P; } D, and if P; = 2 then

D=5 (mod 8) . We have (pi) = pi = pi , and from ordp (x) = ordp (x') and
i i
Lemma 7.4 we obtain
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ord = 2-ord < 2-ord -x') = 2-ord_ (2-u-/D
pi(y) pi(X) pi(x x") pi( )

It follows, using (7.6), that
if P; # 2 then ordpi(y) = 2-ai =0 ,

if . =2 then ord, (y) = 2-a, =0, 2, and if a, =1 then
pl 2 y i i

ordz(u) =0 .

(ii). Py ramifies in K . Then P | D if P =2 ,and D=2, 3 (mod 4)

. _ 2 _ g _ ry = L.
if P; = 2 . We have (pi) = pi, pi = pi , and ordpi(x) = ordpi(x )y = S8y

From Lemma 7.4 we find

ord (y) 2:0ord_ (x) <1+ 2-ord_ ((x-x')/2-YD) = 1 + 2-0rd_ (u)

By (7.6) we obtain

ordp (y) =a, =0, 1, and if a; = 1 then ordp (u) =0 .

: i
i i
(iii). P; splits in K . Then P Y D , and if p; - 2 then
= - .ot ' -
D=1 (mod 8) . We have (pi) pi pi, pi = pi . Further, ordpi(pi) 1,
ordpi(pi) = 0 . Hence ordpi(x) =a; , ordpi(x )y = bi . If a; = bi then

from

ordpi(y) = 2~ordpi(x) < 2-ordpi((x—x’)/2) = 2~ordpi(u)

we obtain by (7.6) that

ordpi(y) =a; = bi =0 .

1f a; » bi then ordpi(y) = a; + bi > 0 , hence ordpi(u) =0, by (7.6).
We infer in this case
ordp.(y) = a, + bi > 1+ 2~m1n(ai,bi) =1+ 2-ordp'(x—x')

1
1 1

=1+ 2-ord 2
or pi( )

It follows that
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ordpi(y) = max(ai,bi) s mln(ai,bi) =0 if P, * 2,

ordpi(y) = max(ai,bi) + 1, mln(ai,bi) =1 if p; = 2

Put bO = min(ai,bi) if p; = 2 occurs, and b0 = 0 otherwise. (Note that

min(ai,bi) = 1 may occur only if pi ~ pi , hence only if Py = 2 splits).

Let us assume that the splitting primes of Pys -y Pgo@re pr, ..., Py

for some 0 < t < s . Put

h.
For i =1, ..., t , let hi be the smallest positive integer such that pil

is a principal ideal, say
h

i
o= ()

i
determined up to multiplication by a unit. Thus we may choose ™ such that

If h denotes the class number of K , then hi | h . Now, n, € K is

x| > |x!| if i€,
1 1

|n.] < |x!] if ie I’
1 1

For i =1, ..., t , put
| a, -b, | =c.-h, +4d, ,
i i i i
with ¢,, d, e N, , and 0 <d, < h, - 1 . Consider the ideal
i i 0 i i
bO di di s ai
a=(2 e, [ 9! M »,
. i, i . i
iel iel’ i=t+1
From the above considerations it follows that, for given K , Pis -oon Py

there are only finitely many possibilities for a . By (7.7) it follows that

¢y cy
) =a- [l (a1 ()
iel iel’
(namely, |ai—bi| = max(ai,bi) if Py = 2 , since then mln(ai,bi) = 0 ; and
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lai_bil = max(ai,bi) -1 if P; = 2 and bO =1 ). Hence a 1is a principal

ideal, say
a = (a)

for an a € OK . Up to multiplication by a unit, there are only finitely many

possibilities for a . Let ¢ be the fundamental unit of K with € > 1

Now, (7.7) leads to the system of equations

c, c.
ta - el N n T = t

iel . iel”’

It

x =2z + uwh

) (7.8)
n 1 €4
x' =z - ubD=1ta"-¢' - ﬂ o ﬂ w,
. i .
iel iel’
where ne€Z . Put for ne Z , my, ..., M€ NO , and for each possible a
a n My " & n M My
G (nm,,...,m ) = e ﬂ T, H ! - ce! - ﬂ - ﬂ .,
e L € 2D e e 2/D ier ¥ ierr '
n my my ' o,n My ™y
Ha(n,ml,..‘,mt) = %~e I S Y + %~e' LI S .
iel iel’ iel iel’
Then (7.8) is equivalent to
+u=20G6 (n,e,,...,c.)
a 1 t (7.9)
+ -
+ 2z Ha(n,cl,...,ct)

The functions Ga and Ha are generalized recurrences in the sense that if
all variables but one are fixed, then they become integral binary recurrence

sequences.

7.4. Towards linear forms in logarithms.

Let us write

u, = ord_ (u)
i P
for i =1, ..., s . Put for each «
IU ={i}tl=<1i=<s, ordpi(Ga(n,ml,...,mt)) > 0 occurs
t
for at least one (n,ml,...,mt) € Z X NO )
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Note that since (u,y) = 1 the sets IU' I, I are disjunct. We proceed

with the first equation of system (7.9). Written out in full detail it reads

c. C. , c, c, u,
a n i i a n i i i
e w7 ] w - et el Sl = b, (7.10)
2D et ogerd 2/D ier 1 qer't ier’
Now, I, I', I depend on a , which depends on the particular solution of

U
equation (7.4) that we presupposed. However, we know that o belongs to a

finite set, which can be computed explicitly. So if we can solve (7.10)
completely for each a of this set, then we can find all solutions of (7.9),

hence of (7.1).

The set of the a’s may be reduced, without loss of generality, as follows.

If D = 1 (mod 8) then bO =0, 1 may both occur, with a = ag, 2~a0
respectively. We only have to consider 2~ao , because if u = Ug, 2 =24 is
a solution of (7.9) for a = o > then u = 2-u0, z = 2-z0 is a solution of
(7.9) for a = 2~a0 . Hence it is not necessary to consider a = o if also
a = 2~a0 is already being considered. By the same argument, if
D =5 (mod 8) then with a = o such that ordz(ao) =0 also a = 2‘00
may occur, so that we only have to consider the latter. Note that it may now
occur that (u,y) = 2 . The condition (u,y) = 1 is used only to ensure that
IU and I U I' are disjunct. This remains true in the above cases with
(u,yy = 2 . Further, if (ao) # (aé) for some ag then we only have to

consider one a of the pair ag, aé Namely, by e€-¢’' = *1 we have (we
denote the I, I’ belonging to o by IO’ Ié , then the I, I' belonging
to oy are IO’ IO )
Gaé(n,ml,. )m )
aé n i ‘i % n 4 3
= ! - e’ ’ .
27D € g'nl g L 575 € Q'nl g L
0 0 0 0
aé -n °i i %0 -n °i ¢i
=+ Ler ' - '
*l9mpe Q L Q,wl 27D € g L Q’wl
0 0 0 0
=%6, (nymy,...m)

and analogously
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From equation (7.10) we now derive pi—adic linear forms in logarithms, in

three different ways, according to i € I, I' or IU . Put

3. B _ . _ _1
Ty =3 if P; = 2, 7 1 if Py 3, 7 2 if Py =5

Then 1 > 1/(pi—1) , hence if ordp (&) = 7 for a & € K then
i

1+ = d . .
ordpi(logpi( £)) = or pi(6) (7.11)

We now have the following result.

LEMMA 7.5. Let n, c,; (iel1vul ), ug (ie IU ) be a solution of
(7.10).

(i). For 1 € IU put

Ai = ordp'(Z/D/a’) s
1
a € 7rj
A, = log (=) + n-log (=) + ¥ c.-log (=%)
o Py @ P ¢ j€1 Py 7y
"3
- 2 c,-log (=
jerr 3 P Ty

If u, + X, 2z v, then
i i i
u, + Ai = ordp (Ai)

1 .
1

(ii). For 1 €1 put

x
I

a
i Ordpi(ET) ,

al
K, = log_ ( ) + n-log (e') - 3 wu,-log_ (p,)
p; 2/D P jer J p; ]
+ 3 c,-log

R )+ -1
jer p, "3 T Lo

(m.)
i jer j

g
Py

If h,-c, + k, = v, then
i 71 i i

h,-c, + k., = ord_ (K,)
i p, 1
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(ii'). For 1 € 1' put
. a’
Ki ordpi(a ) .,

’ = e - _ ) .
K; 1°gpi(z_fn) +n 1ogpi<s) 2 uj;-log, (py)
JGIU i

+ Yy e

‘log  (m.) + Y c.-lo
jer P, g

g (mi)
i jEI' J P: ]

j 1

If h,-c, + k! = vy, then
i 7i i i

h,-c. + k! = ord_ (K!)
i p; 1

Remark. Note that all the above pi—adic logarithms are well-defined, since
their arguments have pi—adic order zero. This follows from the fact that
I I and 1’ are disjunct, and if D = 1 (mod 8) from the choice
a = 2~a0

Proof. For (i), divide (7.10) by its second term. For (ii), divide (7.10) by
its second term, and add 1. For (ii'), divide (7.10) by its first term, and
subtract 1. Then, in all three cases, take the pi—adic order, and apply
(7.11). O

The linear forms in logarithms Ai’ Ki’ Ki , as they appear in Lemma 7.5,
seem to be inhomogeneous, since the first term has coefficient 1. However, it
can be made homogeneous by incorporating this first term in the other ones,
as follows. Put

h -1 2. h
= lem ( N 1o S)

Note that, by the definition of a ,

* h* b
n, n . 0

h ) St ioo M

a =1 ¢ . ﬂ w, ﬂ ! H p. -2 s (7.12)
. i, i . i

iel iel’ i=t+1

where the exponents ng for 0 < i < s are integral. It follows that

Put
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i i 0 j RS
Then it follows that
% % . .
Ai = n ~1og (—-) + ) c -log (;%) -3 log (;%)
Py jel J i’ jer’ J Py j

Further, note that the prime divisors of D are just the ramifying primes.

So, by (7.12),

* *
o h ,ni n,-v, h -(bo—uo)
G7p) ﬂ’f S LM ﬂ P; -2 ,
iel iel’ i=t+1
*
where v, - —-h ord (4D) € 7 for i = til, ..., s, and vy =1 if 2
i
splits, Vo = 0 otherwise. If P; ~ 2 splits we have assumed that b0 =1
Hence the last factor vanishes. So put
* * * * * *
K. =h K. , K@ =h K/, u, =h u, - (n, —v, ),
1 1 J J J
-1 1<i= 0
v R U {i] t+ i=s, v, # }

Then it follows that

* *
K, =n .1ogp (e - ¥, uj log (p )y + ) cJ log (nj) +
i JEI P jel

+ Z log (w.) ,

*
Ki = n*~log (e) - Z u log (p ) + z c log (m.) +
Py JGI P jel J Py J

*
+ 2 c.-log ()
jer J Pi J

This leads to the following reformulation of Lemma 7.5.

LEMMA 7.6. Let n, ¢. for ie€elI ul" , u, for 1€l be a solution of
1 1 * * x % *

(7.10), let \., k., k! be as in Lemma 7.5, and let h , A, K., Ki , n., c.,
i i i i i i i i

* *
u,, I be as above.
i U

i). i . .t AL, = .
(i) Let 1 € IU If ug kl 7 then

* *
u. + X, + ord (h ) = ord (A,)
i i 12 p; 1
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(ii). Let i€l . If h,.c, + k., 2 v, then
i i i i

* *
h.-c, + x. + ord (h ) = ord (K.)
i i i Py P i

(ii'). Let i e 1' . If h,-c., + k! =2 v, then
i i i i
* *
h,-c, + x! + ord (h ) = ord_ (K! )
i i i P p, i

* * *
Remark. We will study the linear forms in logarithms Ai’ Ki’ Ki for
* * *
arbitrary integral values of the variables n , Cir Yy oo Notice that the

parameter a has disappeared completely from these linear forms. This means
that we have to consider the linear forms for each D only, instead of for

each «a

7.5. Upper bounds for the solutions: outline.

Let us first give a global explanation of our application of the theory of
p—adic linear forms in logarithms, that gives explicit upper bounds for the
variables occurring in the linear forms Aj, Kj, Ki* . Then we give arguments
why we choose this way to apply the theory, and not other possible ways. In
the next section we give full details of the derivation of the upper bounds.
In the sequel, by the ’‘constants’ Cl, ey C12 we mean numbers that depend

only on the parameters of (7.10), not on the unknowns n, cgy Uy

Put
M= max (c¢.) , U=max (u,) , B=max ( M, U, |n| ) ,
. i . i
ieTul’ iel
U
* * * * * * * *
M = max (¢,) , U =max (u,) , B =max (M, U, [n}]| ),
. i .
ielul’ iel
U
N = max ( ]n0|, . |nt|, |nt+1—ut+1|, A ns—us| )
Then it follows that
* * X* N
X <h X+N, Xt T (7.13)
h

for X =M, U, B . We apply Lemma 2.6 to the p-adic linear forms in

*
logarithms. For Ai we find, in view of Lemma 7.6(i),
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U<+ C2-log(B*) , (7.14)

* *
and for Ki’ Ki we find, in view of Lemma 7.6(ii), (ii’'),

*
M < 03 + Ca-log(B ) . (7.15)
Here, Cl’ C2, C3, C4 are constants that can be written down explicitly. In
order to find an upper bound for B we try to find constants ClO’ C11 such
that
B <C C,,-log(B" 7.16
10 * Cyp-los(B ) . (7.16)

In view of (7.13) we may insert and delete asterisks any time we like, as
long as we don't specify the constants. In order to prove (7.16) it remains,

in view of (7.14) and (7.15), to bound |n| by a constant times 1log B . We

will introduce certain constants CS' C6’ C7 , and distinguish three cases:
(a).—(C6+C7-M)5n5C5,
(®). n>C, (7.17)

(c¢). n<~-( C6 + C7~M )

In case (a) it is, by (7.15), obvious that (7.16) holds. In cases (b) and (c)
one of the two terms of Ga dominates. We shall show that there exist
constants Cg’ C9 such that

In| < Cg + Cy-U . (7.18)

Then (7.16) follows from (7.14).

From (7.16) we derive immediately an explicit upper bound C12 for B ,
hence for all the variables involved. Since the constants Cl, e, CA will
be very large, also 012 will be very large. To find all solutions we

proceed by reducing this upper bound, by applying the computational p-adic
diophantine approximation technique described in Section 3.11, to the p-adic
linear forms in logarithms A:, Ki, Ki* . Crucial in that line of argument is
that the constants C ..., C are very small compared to Cl, ..., C

This method leads tosreduced 1ounds for the p-adic orders of the 1intar
forms. Then we can replace (7.14) and (7.15) by much sharper inequalities,
and repeat the above argument, to find a much sharper inequality for (7.16).
In general we expect that it is in this way possible to reduce in one step

the upper bound C for B to a reduced bound of size log C

12 12

Before going into detail we explain briefly that it is possible to treat
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(7.10) partly by the theory of real (instead of p-adic) linear forms in
logarithms, and subsequently by a real computational diophantine
approximation technique (cf. Section 3.7), and why we prefer not to do so.
First, note that Ki and K; have generically more terms than Ai , and are
therefore more complicated to handle. Since Ki’ Ki occur only in case (a),
this is the most difficult case. Equation (7.10) consist of three terms, each
of which is purely exponential, i.e. the bases are fixed and the exponents
are variable. If one of these three terms is essentially smaller than the
other two (more specifically, smaller than the other terms raised to the
power § , for a fixed & € (0,1) ), then we can apply the real method. There

are two ways of doing this. Write (7.10) as
x - x' = 2-u-/D

. 6
First, suppose that |[x-x'| < |x'| . Then |[n]| cannot be very large, and we
are essentially (i.e. apart from a finite domain) in case (a). Unfortunately,
the region for |n| that we can cover in this way becomes smaller as M -

(see the example below). Second, suppose that Ix| > |x’[1/6 , or Ix] <

|X’|6 . Then we are essentially in case (b) or (c). But this area can be
dealt with easier p-adically, since here we use the linear forms Ai

whereas the real linear forms in logarithms used in this case will
generically have more terms. The areas sketched above, in which we can apply
the real theory, will not cover the whole domain corresponding to case (a)
(cf. the white regions in Fig. 4 below). Hence we cannot avoid working with

the p-adic linear forms Ki’ Ki . But then it is more convenient to avoid the

use of real linear forms.

Let us illustrate the above reasoning with an example. Let a = a' = 1 ,
e=1+442 , m =1+2/2 ,s=1,1=1(1),p -7,1' =g, and 5=§
Then we have x = (1+/2)n-(1+2-/2)M . Fig. 4 below gives in the (n,M)-plane

2 ' ! ’ 1 ’ ’
the curves x = x'", 2-Ix'|, IX'I¥Ix" 1, Ix'|. Ix'1=/Ix" 1. S Ix'], SIx)
which are boundaries of the four regions A, B, C, D . We have the following
possibilities.

number of terms in linear form

region case (ess.) p—adic method real method
A (b), (¢) 2 3
B (b), (c) 2 -
C (a) 3 -
D (a) 3 2
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TR
=
¥

x = 2Ix'1

- i
= Ix'l
) 3 - 1
\\ \\\\
N -
x = /I x = 31x'l
L . 8
It can be reduced to €~|x | < x < Ix'| - Ix"|
but will never

The really hard part is C.

. 6 '
and {x'| + [x'| < x <c x|
disappear. So we cannot avoid the p-adic linear form in case

for any ¢ >1, 6§ € (0,1) ,

works in regions C and D together.

7.6. Upper bounds for the solutions: details.

We now proceed with filling in the details of the procedure

previous section.

We have

We apply Yu's lemma (Lemma 2.6) as follows.
d 2 For the «a, e/e', m,./m, , or €, €', p.
1 13 ]

we have
to compute the heights of these numbers. We have at once

h(p. 1 . if p. =23, h(2)=1,
(pJ) Og(pj) i pJ (2)

h(e) = h(e') %~10g(e) s
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' 1 r
h(wj) = h(nj) = ;-log[max(l,|1rj|)~max(1,|1rj|)] .

Further, let B8 = ¢ or B = "j . Then the leading coefficient of g/8' |is

a5 = |8-B'| . Hence

h(Gr) - 1og(1-4" | -max(1, |55 1) -max(L, 1571)

- log(max(|],18' 1)) .

Hence
P T,
(&) = log(e) | h<;§) = log(max(lxs .17 D) -

The order of the a; is important in two respects: it is required that the

Vi for i =1, ..., n-1 are in increasing order, and that ordp(bn) is
minimal among the ordp(bi) . Since the bi are the unknowns, we should
assume that Vn < V1 < ... = Vn—l . In the final bound however, only the

product Vl-...-Vn and Vn—l appear. So the ordering of the Vi only

matters for defining Vn—l . It follows that we can take

v, = max ( h(ai), fp-(log py/d ],

with the oy in any order, if we define

Vn—l =max ( 1, Vl’ e, Vn )
Further, we take
4 fp/d
B=B,=-B =B -max ( L B L I A A -1) )

Then 10g(1+%;-B) > fp-(log p)/d . By B =2 it follows that 1 + %H-B < B .

Hence we can take
W=1log B

There are two more conditions to be checked. The first one is that

b b
all-...-ann # 1 . This is immediate, if we assume the obvious condition that
not all bi are zero. The second one is [K(a}/q,...,ai/q):K] = qn , which

is less obvious. For our situation it follows from the following lemma.

LEMMA 7.7. Let K = Q(/D) , with ¢ as fundamental unit, and h as class

number. Let , +..y P be distinct prime numbers, and let P, be for
Py s i
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i=1, ..., s a prime ideal in K 1lying above P; - Let hi be a divisor
h,

of h such that pil is principal, and denote a generator by LIRS Let
either: (1) all Py split, and then
€ ﬁj
§0=€_’, §j=1r_( for i=1, ..., s,
J
or: (2)
= ¢ or €' , . =7, or = for j =1, ..., s
€0 €J j j 3
Let q be an odd prime, not dividing h . Then
1 1 s+l
(K(eg/9, .. 6/ K] = q
Proof. Let KO = K(éé/q) , and Ki = Ki_l(Ei/q) for i =1, ..., s . We use
induction on i to prove that [KS:K] = qs+1 . Note that [KO:K] = q
Suppose that [Ki:K] = ql+1 . It remains to prove that [Ki+1:Ki] = q , hence
it suffices to prove that Ei+l & Ki , since ¢ is prime. Suppose the
: . . . i+l .
contrary is true. Ki is a K-vector space of dimension g , with as
basis all the elements
i kj/q
T = ﬂ £.
Korooikg 503
for kj e (0, 1, ..., g-1 for j =0, ..., i . It follows that there
exist a, k. € K such that
0 i
1/q
£ = Y a T (7.19)
i+l k0’~ yki ko,. ,ki ko, .,kl

The group of K-embeddings of Ki into € is generated by the aj for
j=0, ..., 1 defined by

aﬂfyq)=§yq for L=0, ..., 1, L=3,
1/qy _ .l/q
Uj(fj ) p §j ,

where p is a primitive q th root of unity. Hence all the embeddings are

given by
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for Lj e {0,1, ..., g-1 } . It follows that

i Lj i km/q i ijj
® (r )= Mo (NNe " )= Mp? 7er
LO,...,Li kO""’ki =0 J o m =0 ko,. .,k1
i
T Lk,
_ pj=0 J J.T
ko,...,ki
The minimal polynomial of El/q over K is 3 - £ Hence the
i+1 i+l
conjugates of 51{% are pJ'ﬁii% for j =0, 1, ..., g-1 , all with equal
multiplicity. There exist numbers mj e ( 0, 1, ..., g-1 } such that for
j=0,1, ..., q-1 we have

vay " Va

Jk

L.) we find
i

i

i+l

q unknowns

o5 i+l
Hence
i
Y ijj
l/qy _ 3=0 1/q
C0 oo Baar) T Ein
0 i
Now apply o to (7.19). Then for each tuple ({.,...
’ LO""'Li 0
i i
Y ij. ¥ L.kj
j=03 3 1/q =077
, €1 DI k. "k
ko, ...k, 077" 0’
0 i
i+l - . .
Here we have a system of g linear equations in the
ay K The determinant of this system is exactly the square root of the

0Ky

i+l

discriminant of Ki over K , hence nonzero. Consequently there is in ¢

just one solution of the system. But we know that solution:

ay kT 0 if (ko,..,,k ) = (mo, ,m_)
0 i

R S L
o' oMy

The latter equation now yields an equation over K :

q : "
£, = a . ﬂ £.
i+l My, oo, my =0 j

In case (1) this leads to the ideal equation
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h, : m,-h
P i+l q i pj J o3
P =al | P ,
i+l j=11"3

and in case (2) to

<'>hi+1 q 1 (
i+l o Il

(where p( ) stands for p or p' ) for some fractional ideal a (note

that (50) = (1) ). Because of unique factorization for ideals it follows in

both cases that q divides all mj~hj for j =1, ..., i and hi+l . This
contradicts the assumption q | h . )
b1 b
Remarks. 1. I1f ord (o -...~an“—1) > 1/(p-1) then
bl bn
ordp(a1 Ceay -1) = ordp(bl-logp(a1)+...+bn~logp(an))

We prefer to work with the logarithmic version, since that is the one we use
in the computational method of reducing the upper bounds.

2. In order to apply Yu's lemma we can take for q the smallest odd prime
f
that does not divide h-p-(p p—1)

We now proceed to compute the constants C1 to C12 . To find C1 and C2
*

we apply Lemma 2.6 to Ai , for all 1i € IU . Then we find for each such i
constants Cl i 02 i such that, under the conditions

f 2

* P./
u, + A, = vy B = max ( 2 ﬁ~t -(p . -1) )
i i~ i 3071 i ’

*
(where ti denotes the number of terms in Ai ), we obtain

a wy<c C. .-log B
or p.(Ai) < .+ yi' og

1,i 2

i
By Lemma 7.6(i) and the relation ord)p - ep-ordp we see that, assuming the
conditions

f_ /2
* 4 Py
U 2 max (y,-A,) , B =max (2, 3.t -(p, -1) ) (7.20)
. i i . 371 i
iel iel

U U

it suffices to take
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C, = max [ —(Ai+ordp'(h*)) + Cl,i/ep. ] s 02 = max ( C2 i/e )

1 . . , P,
1EIU i i 1EIU i
Then (7.14) holds.
* *
Next we apply Lemma 2.6 to Ki and Ki , for all iel and I’
’
respectively, to obtain 03 and C4 . By X'’ we denote X if i eI,
and X' if 1 € I' . There exist by Lemma 2.6 constants C3 { and C4 i
such that under the conditions
fp /2
" * 4 i
hi.ci + Ko > 7o B = max ( 2, §~ti-(pi -1) ]
l)*

(where again ti denotes the number of terms of K; ), it follows that

' *
ordp (Ki ) < CB,i + CA,i-log B

Again, by Lemma 7.6(ii),(ii’') it follows that, under the conditions

() £ /2
YiT*y * 4 1
M > max f~—————J , B = max [ 2, 3-t.-(p. -1) ) (7.21)
. h, : 3 71 i
ieTul’ i ielul’
it suffices to take
" d h*
#g tord, (h) o c .
i 3,1 4,1
C, = max [ + J , C, = max ————-J
. h, h,-e . h,-e
ieIul’ i i pi ieTul’ i pi
Then (7.15) holds.
We take CS to C7 as follows:
C. = log(2- %]y /210 ¢, = log(2-|%]y/2:10
5 - og a g € ’ 6 - og a’ g €,
T wi
C, = ( Y log|—| + ¥ log|—| )/2-1og ¢
7 . T . .,
iel i iel’ i
Note that C5 or C6 may be negative, but that always —06 < C5 . Further,
C7 is always strictly positive, unless I = I’ = @ . Next we show how to
take C8 and C9 . Suppose first that
n > max ( CS’ 0)
Then, from e-¢' = #1 and the choice of T, we find by (7.8) that
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c
x!
i

”,
1

x,
1
pry

o,
1

n.n

iel

€
e’

X a
X_'sa—'.

which expresses that the first term of Ga dominates. Put

ier’

. i
1eIU
Then we infer
U Yy
o= Il p. 7= Ix=x"1/2:/D > |x|/4-/D
iel
U
la] n ¢ i _ja] n
= ce - ﬂ [, ﬂ jml > e,
4D iel i seT’ i 4/D
hence
n < ( 10g(?§%) + U-log(P) ]/log €

Next suppose that
n < min ( —(C6+C7-M), 0)

Then we find that the second term of Ga dominates, namely

., Cs c,
|X" ’a,| e ﬂ LIS H PR
X @ ¢ ie1|™i 1e1' |1
‘ ! L M -2 (n+C_-M)
a’ -2'n i i o’ 7
N AT = — - |2
o ier|"i| iert|Ti
.. 2-C
> |E_ ‘€ 6. 2
e 4
Put
L= [Imin (1, IS IDAE [l min (1, I 1)
iel iel’
Then we infer
U , , a'| In| e i
P2 |x=x'1/2:/D > |x'[/4/D = goptee 0 0] qmi ) T (1 g
iel iel’
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, c,

|a

Cc
P T minG, gar ) B mind, x|
. 1 . 1
iel iel’

—-(Inf-C.)/C
I 6 7

v

Pef—

a'| |n| FM jla’| |n|

. . > . .
WD € wh €
Hence

-C, /G 1/C
In) < [ 10g[?§2T~F 6 7) + U-log(P) ]/log(e-F 7)

The remaining possibilities in cases (b) and (c) are CS < n =<0 and

0 <n< —(C6+C7~M) < —C6 . So we may take, noting that T <1 ,
-C,/C 1/C
4y 4y'D 677 7

C8 = max [ log[Ta%g/log €, 1og(T;7T-F ]/log(e-r ], —CS, —C6 } s

1/c,
Cy = (log P)/log(e-T )

Then (7.18) holds in the cases (b) and (c) . Now take

C = max [ Cl, C

10 ¢

3 sl |c6;+c3-c7, Cg+Cy-Cy ),

€y =max (G, C,, C, Co, €, Cq )

Then it follows that (7.16) is true, if conditions (7.20) and (7.21) hold.

Hence, by Lemma 2.1, we infer the following result.

LEMMA 7.8. In the above notation,

* *
B <C B<C

12 12

hold unconditionally, where

* 2. (N4B™ n log(h"-C Y N
C12 = max -[ + ~Clo+ -Cll- og(h - 11)), Tax [ -(7i—Ai)+ ],
iel
U
[ f /2
% YR P.
max [h NN N), 2, max [é~t.-(p. + —1)) J R
. h, . 3 71 i
ielul’ i 1eIUI'UIU
C L C* N
12 = % (€0
h
Proof. <Clear. m]
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Remarks. 1. Theorem 7.1 is an immediate corollary of Lemma 7.8.

2. In practice, almost always the first term in the max-definition of C

12
dominates. Moreover, the term N will in practice disappear in the rounding
off. Similarly, in the definitions of C10 and C11 , the dominating factors

are in practice C1 to Ca

7.7. The reduction technique.

* *
We now want to reduce the upper bound C12 for B (or C12 for B , which
is equivalent), to a much smaller upper bound. We do so using the p-adic
computational diophantine approximation technique described in Section 3.11.

* *
We perform this procedure for A = A,, K., Ki , for the relevant 1 . We

work in the p-adic approximation latéice; Fp themselves, and not in the
sublattices described in Section 3.13. The computational bottlenecks are the
computation of the p-adic logarithms to the desired precision, and the
application of the L3—A1gorithm. We refer to Chapter 3 for details. Once we
have found reduced bounds for ordp(A) for the above mentioned A, we

combine these bounds with Lemma 7.6 and with estimates (7.13), (7.17) and

*
(7.18) to find reduced bounds for B and B

*
When reduced upper bounds for B, B are found in this way, we may try the

*
c12‘ C12 replaced by their reduced analogons.

We may repeat the argument as long as improvement is still being made. But at

above procedure again, with

a certain stage, usually near to the actual largest solution, the procedure
will not yield any further improvement. Then we have to find all solutions by
some other method. One technique that may be useful is the algorithm of
Fincke and Pohst, described in Section 3.6. Another way is to search directly
for solutions of the original diophantine equation below the reduced bounds.
In our present equation this may well be done by employing congruence
arguments for finding all solutions of the second equation of system (7.9)

below the obtained bounds.

7.8. The standard example.

In this section we shall work out the procedure outlined above for our

standard example { Pyr oo P, }y = (2, 3, 5, 7 )} , thus proving Theorem
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7.2. In Tables II and III we give the necessary data on the fields K = Q(/D)

for the 15 values of D , and on the factorization of 2, 3,5, 7 in K .

Explanation of Tables II and III. For p; - 2, 3, 5, 7 we give in Table II a

generator of the ideal pi with ordp (pi) >0 if pi is a principal

i
ideal, and we give "pi" if it is not principal. In all the latter cases,
hi =2 , so pi = (ni) is principal. An asterisk (*) denotes a splitting

prime. Note that for each D at most one of the primes 2, 3, 5, 7 splits,

so t =<1 . In the final column of Table II we give for the splitting prime
h

p; a generator L of the ideal pil . In Table III, when vi and pj are

not principal, but pi~pj is, we give a generator of it.

From Tables II and III it is easy to find all possibilities for I, I’ and
a . We may assume I' = @ . In Table IV we give all possible 1, IU’ a (we
give primes Py instead of indices i ). An asterisk (*) appears when
(a) # (a') . The set IU is found by checking Ga (mod pi) for all 1

There are 54 cases with I = @ (the "symmetric" cases), and 54 cases with
I =g (the "asymmetric" cases). We start with the symmetric cases. This
incorporates all cases with D = 3, 5, 35, 42, 210 , when none of the primes

2, 3,5, 7 splits in Q(/D) . Now, t =20 , hence equation (7.10) becomes

u
a n a’ n i
= . — el =+
Ga(n) m € m € _.H pi . (722)
iel
U
With A =¢ + €' €Z , B=Ne=¢c-¢'" =*1 , we have for all neZ
Ga(n+2) = A~Ga(n+1) - B-Ga(n)
)
Since (a) = (a') , there is an n, € Z such that a' = *¢ ~.a . Hence

0
16, (ng=) | = [6_(n)]|

for all n € Z , which explains why we call these cases "symmetric". In this
situation we can apply elementary congruence arguments, as explained in

Section 4.5. We have the following result.
LEMMA 7.9, Let { Pys e P, }o= {2, 3, 5, 7 )} . Equation (7.1) with

conditions (7.2) and 1 = @ has exactly 91 solutions, that appear in Table

I marked with an asterisk (%*).
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Sketch of proof. 1In Table V we give the necessary data for these 54 cases.

We explain this table, and leave many details to the reader to check. For

each p =2, 3, 5, 7 we give Ll, n, ap, h2, . h7 . If for a p only
L. +1 Ll
Ll is given, then p ! Ga(n) for all ne€Z , and p | Ga(n) for at
least one ne€ Z . If n;, a; are given, then
L1+1
P | Ga(n) ® n=n (mod al)
Define n, = a; if n, = 0 , and n, = ng if ny » 0 . Then n, is the
€. +1
smallest positive index such that p | Ga(nz) . Now it is true that

Ga(nz) | Ga(n) whenever n = ny (mod al) s

This 1is related to symmetry properties of the recurrence sequence

(Ga(n)):=_m . For q = 2, 3, 5, 7 we have defined
hq - ordq(Ga(nz))

h2 h3 h5 h7 £, +1
Hence 2 ":3 7.5 7.7 | Ga(n) whenever p | Ga(n) . We have taken Ll

so large that always

2 3 5 7

Ga(n2) >2 73 7.5 7.7 . (7.23)

Consequently, there exists some prime r = 11 that divides Ga(nz) , hence
€,+1

r divides all Ga(n) with »p | Ga(n) . It follows that for a solution

of equation (7.22) we must have

ordp(Ga(n)) < Ll
In this way we find with ease all solutions of (7.22). O
Let us illustrate this with the example D =3 , o =3 . Then

1

1 n n
G (m) = 22+ + 2-2/H"

and Ga(—n) = Ga(n) . We have for Ga(n)
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n 0 1 2 3 4 5 6 7 8 g 10 11 12 13 14 15
Ga(n) 1 2 7 26 97 362 .... Ga(lé) = 50843527
mod 4 1 2 -1 2 1 2 -1 2 1 2 -1 2 1 2 -1 2
mod 3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
mod 5 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1
mod 49 1 2 7 -23 -1 19 -21 -5 1 9 -14 -16 -1 12 0 -12

We see that 22, 3, 5/} Ca(n) for all neZ , and 2 | Ga(n) if and only

if n odd . So p =7 is the only interesting case. We have 7 | Ga(n) if

and only if n = 2 (mod 4) |, 72 | Ga(n) if and only if n = 14 (mod 28) ,
(and in general

7K | 6 (n) & n= 2.7%1 (mod 4~7k‘1)
for k = 1 , and a similar relation holds for any symmetric recurrence and

any prime p for which arbitrary high powers of p occur in Ga(n) ). Now,

Ll = 0 does not lead to (7.23), since then n, = 2 , and Ga(2) = 7 , so that

no suitable r exists. But with Ll = 1 we have n, = 14 , and
. 2

h2 = h3 = h5 =0 , h7 = 2 , and (7.23) holds, since Ga(la) > 77 . Hence

there exists a prime r > 11 such that r | Ga(IA) , and thus r | Ga(n)

whenever 72 | Ca(n) . It follows that for solutions of (7.22) we have

Ga(n) < 21~30-50~71 = 14 , so that all solutions can be read from the above

table. Note that it is not necessary that r 1is known explicitly, only that

Ga(nz) is large enough. In our example, r = 337 or r = 3079 satisfy.

Finally we treat the remaining 54 cases, where I » @ . Then we need the

non-elementary reduction technique described in Sections 7.5 to 7.7.

In all our instances, the set 1 contains only one element, since there is
only one splitting prime. We denote by x the LA belonging to this prime,

and we write m for ¢ - Equation (7.10) now reads

u,

a_ n m _ af.e'n.",m 4 ﬂ j
2/D € 2/D =Py
jel
U
*
We computed the constants C1 to C12 s C12 , according to Section 7.6, for

each of the 54 cases. We omit the details of these computations, and simply
give the data in Table VI. In this table we give for each D the P; € IU

together with the v and Ai (it turns out that the Ai do not depend on
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the o , only on the Py ). The values "ne, n, n,, 0y, Ng, n, are the

integers such that

a =% e x 2 .07

It follows that in all cases we have C;z < 3.23x1030

The next step is to define the lattices, and find lower bounds for the
*
shortest nonzero vectors in the lattices. We start with treating the Ai , of

which there are 3 for each of the 10 D's . We have computed the 30 values of

pl[”'] tog, [ ']

] ]

such that it is a pi—adic integer, to the desired precision of u digits. We

mlm

toock p as follows:

P, b P
2 | 209 | 8.22x10%%
3 | 133 | 2.87x10%°
5 95 2.52)(1066
7 76 | 1.69x10°%
in order to have p? somewhat larger than the maximal Clg , being
1.05x1061 . We computed the 30 values of the 6(“)'5 but do not give them

here. The lattices F“ are generated by the column vectors of the matrices

1 0

19(/1) pu

We performed the p-adic continued fraction algorithm of Section 3.10 for each
of these 30 lattices. In the table below we give for each D the maximal
C;z (there is one for each o ), and the minimal bound for L(F“) (there is
one for each i e I ) that we found. We omit further details. In all
cases, L(F ) > /2- C . Hence Lemma 3.14 with n = 2, ¢y = 0, ¢y = 1 yields

*
ordpi(Ai) < u + By o ie IU s

where

. € ™
= min ( ord, (log, (7)), ordy (logpi(;T)) )

ko . . .
1 1 1
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*
D P kg C12 < L(F“) > U =<
2l 2.3 5] 1.5 1.0, 1.0 3.19x10%% g.26x10°° 210
6| 2.3, 7] 15 1.5 1.0 2.72x10%% 2.05x10°1 210
712, 5. 7] 20 1.0, 0.5 1.0x10°° 24310t 210
102, 5 7|15 05, 1.0 3.2220%° 2.22x0°" 210
w2 3 7|15 1.0 05 4.80x10°% 1.48x0°r 210
15 2.3 5| 3.5 1.5 0.5 2.15x10°% 1.55x10°1 212
210 2. 3, 7] 3.0 0.5 05 1.90x10°% 7.78x10°° 211
30 | 2,3, 5] 2.5 0.5 0.5 415028 1.37x10%Y 211
70 2.5 7] 2.5 0.5 0.5 3.23x10°%  2.51x10°1 211
105 | 3,5 7] 1.5 0.5 0.5 4.56x10%° 3.96x10°T 134
*
as given above. By ki + ord (h) > 0 we obtain from Lemma 7.6(i) upper
i
bounds for , 1 e I, hence the upper bounds for U , as given in the

table above.

u,
1

*
Next, we treat the Ki

where

From this table our choice for

*
K.

iel

u

, one for each D , having 5 terms, namely

*log (e') +m -log. (')
n *10 € m 10 ™ -
gp. gp.

1

SO .
pl

1

1

*
Y u.-log_ (p.) ,
<j<t Py ]
j=i

is the splitting prime. We have the following data.

YD (mod pi) becomes clear.

ord_ (log_ (-))

D P; YD (mod pi) pi Py
e n' 2 3 5 7
2 7 3 1 2 1 1 1 -
6 5 4 1 1 1 T - 2
7 3 1 1 1 1 - 1 1
10 3 2 1 1 T - 1 1
14 5 2 1 1 1 1 - 2
15 7 6 1 1 1 1 1 -
21 5 4 1 1 T 1r - 2
30 7 4 1 1 1 1 1 -
70 3 2 1 1 1 - 1 1
105 2 1 (mod 4) 2 4 - 2 2 3
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It follows that ord (log (e€')) is always the least one of the five
i i
ordp 's 1in the above table. So we define:
i
lo ! lo (p.
gpi( ) gpi pJ) ' N
1= TEE;_??T7 ) 62’3’4 =~ Tog (1) (j € (1,2,3,4), j=i) ,

i pi

and we computed these numbers up to u digits, with pg as follows.

Py b Pg
2 539 1.80><10162
3 343 4.49x10163
s | 245 | 1.77x10t71
7 | 196 | 4.36x10™%°
so that p? is somewhat larger than the maximal Ci; . We computed the 40
values of the 6&7;’3,4 , but do not give them here. The lattices F# are

generated by the columns of the following matrices:

We computed the reduced bases of the 10 lattices by the L3—a1gorithm. Again,

we omit the computational details. We found data as follows.

D pinI m Ko Ciz < L(Fp) > M <
) 7 196 1 3.19x10%%  2.25x10%% 196
6 5 25 1 2.72x10%%  2.16x10%3 245
7 3 343 1 1.07x10°°  1.14x10%% 343
10 3 343 1 3.22x102%  1.07x10%%2 343
14 5 25 1 4.80x10%%  4.92x10%% 245
15 7 196 1 2.15x10%%  2.78x10%% 196
21 5 25 1 1.90x10%%  4.37x10%3 245
30 7 196 1 4.15x10%%  2.69x10%%2 196
70 3 343 1 3.23x10°0  1.03x10%% 343
105 2 539 2 4.54x102°  6.68x10°% 540
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, » SO that by Lemmas 3.14 and 7.6(ii) and

* *

i + ord (h ) >0 and hi > 1 we have M < ordp (Ki> < p + Bo o hence an
i i

upper bound for M as given in the table above.

*
In all instances, C(F“) > /S-C1

Finally, we compute the new, reduced bounds for |n| , and thus for B . This
we do by

+ C_ M, C

|n} < max [ CS’ C6 7 8

+CyU ) .

Hence we find data as in the following table.

* * *
Here we used B =<h B+ N and h = 2 . So in one step we have reduced
* *
the bound B < 3.23X1031 to B =< 1627 . The total computation time was
1715 sec, on average 0.7 sec for each 2-dimensional lattice, and 170 sec for

each 5-dimensional lattice.

D| G < C < €, < Cg< Cg< M= U< |n < B=< N=< B <
2 | 0.394 0.394 0.420 1.967 3.859 196 210 812 812 3 1627
6 | 0.152 0.652 0.190 1.345 1.631 245 210 343 343 3 689
7| 0.126 0.626 0.357 2.702 2.757 343 210 581 581 2 1164
10 | 0,601 0.191 0.181 1.396 2.337 343 210 492 492 3 987
14 | 0.102 0.602 0.325 1.861 1.508 245 210 318 318 3 639
15 | 0.540 0.668 0.257 1.394 1.649 196 212 350 350 2 702
21 | 0.222 0.722 0.142 1.564 2.386 245 211 505 505 1 1011
30 | 0.414 0.613 0.399 1.239 1.102 196 211 233 233 3 469
70 | ©.362 0.556 0.390 2.729 1.505 343 211 120 43 3 689
105 | 0.390 0.579 0.379 3.232 2.545 540 134 344 540 1 1081

*
We made a further reduction step, now using the reduced bound for B as

* *
12 We give the data for the Ai in the table
below. For u we took ByBy with By as above, and p, as below:

given above in stead of C

P j 2 3 5 7
By l 11 7 5 4
*
We found L(Fu) and bounds for U as given above. For the Ki we found,

with pu = By By with By o as above, and By as in the first table below,

the results given in the second table below.
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p | BY < /2-13* < u u < “W(r )= p.s <
1 m 0
2 | 1627 2301 2 22 1.82x10° 1. 23
6 689 975 3 33 3.99)(10[4 1. 34
7 1164 1647 3 33 4.50)(104 2 34
10 987 1396 3 33 5.91>(104 1. 34
14 639 904 3 33 2.58x104 1. 34
15 702 993 3 33 7.36X10A 3. 36
21 1011 1430 3 33 2.00)(10A 3 35
30 469 664 2 22 9.98x102 2. 24
70 | 689 975 3 33 5.76x10% 2. 35
105 1081 1529 3 21 3.89)(10[4 1. 22
p | B < /5B < 4 u= LT )= 4 M< [n B< B <
1 n 0
2 1627 3639 7 28 1.24x10h 1 28 90 90 183
6 689 1541 6 30 A.OQXIO3 1 30 145 145 293
7 1164 2603 7 49 l.O7x104 1 49 96 96 194
10 987 2207 7 49 1.16X104 1 49 80 80 163
14 639 1429 6 30 3,07)(103 1 30 53 53 109
15 702 1570 6 24 2.70)(103 1 24 60 60 122
21 1011 2261 6 30 3.88)(103 1 30 85 85 171
30 469 1049 6 24 2.50><103 1 24 27 27 57
70 689 1541 6 42 1.90XlO3 1 42 55 55 113
105 1081 2418 7 77 1.00><10A 2 78 59 78 157
The computation time was 15 sec. We made a third step, with for i
p | 8" < /2~B*< m us< LT)Y=z pu, < U=
1 n 0
2 183 258.9 2 22 1821 1.5 23
6 299 414 .4 2 22 875 1.5 23
7 194 274 .4 2 22 1285 2 23
10 163 230.6 2 22 634 1.5 23
14 109 154.2 2 22 268 1.5 23
15 122 172.6 2 22 873 3.5 25
21 171 241.9 2 22 818 3 25
30 57 80.7 2 22 998 2.5 24
70 113 159.9 2 22 585 2.5 24
105 157 222.1 2 14 281 1.5 15
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D |8 s /5B < u us LTy = wy s M

2 183 409.3 5 20 440 1 20

6 293 655.2 5 25 665 1 25

7 194 433.8 6 42 602 1 42
10 163 364.5 5 35 473 1 35
14 109 243.8 5 25 626 1 25
15 122 272.9 6 24 2700 1 24
21 171 382.4 5 25 645 1 25
30 57 127.5 4 16 129 1 16
70 113 252.7 5 35 366 1 35
105 157 351.1 5 55 354 2 56
and finally for |n| , and in more detail for ordp.(u) for i e IU

i

D | Mx u, < u, < ug = uy < In|] =<

2 20 23 14 10 0 90

6 25 23 15 0 8 38

7 42 23 0 10 8 66

10 35 23 0 10 8 55

14 25 23 14 0 8 36

15 24 25 15 10 0 42

21 25 24 14 0 8 61

30 16 24 14 10 0 27

70 35 24 0 10 8 65
105 56 0 14 10 8 41

Now we will not find any further improvement if we proceed in the same way.
But the upper bounds are now small enough to admit enumeration of the
remaining possibilities, making use of mod p arithmetic for p =2, 3, 5, 7

We did so, and found the remaining solutions, presented in Table I. We used

only 3 sec computer time for this last step.

This completes the proof of Theorem 7.2. ]

7.9. Tables.
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Table II.

D h ¢ Ne (31 ) 3 P, 5
2|1 1+/2 -1 72 3 5 1+2/2 1+2v/2
301 2+/3 1 1+/3 /3 5 7 -
511 %(1+/5) -1 2 3 /5 7 -
6| 1 s+2/6 1 247/6 3+/6 14/6" 7 14/6
7|1 8+3/7 1 3+/7 24/7" 5 /7 24/7

10 | 2 34/10 -1 Py pz* P 7 14/10

14 | 1 15+4/14 1 4+/14 3 3/14" 7+2/14 3+/14

15 | 2 4a/15 1 P, P, P pa* 8+/15

21 | 1 %(5+/21) 1 2 %(3+/21) %(1+/21)* %(7+/21> %(1+/21)

30 | 2 11+2/30 1 P, v, 54+/30 pa* 13+2/30

35 | 2 6+/35 1 ? 3 s 7, -

42 | 2 13+2/42 1 ? ?, 5 T+/42 -

70 | 2 251430/70 1 Py p," 25+3/70 P, 17+2/70
105 | 2 41+44105 1 pl* ?, 104+/105 ?, %(11+/105)
210 | 4 29+2/210 1 LN ’, ?, , -
Table II1.

D PP P73 PPy Py Py Py P, LERA
10 -2+/10 /10 - 5-/10 - -

15 3+/15 5+/15 1+/15 /15 6-/15 —542/15
30 6+/30 - —4+/30 - 3+/30 -

35 - 5+/35 7+/35 - - /35
42 6+/42 - - - - -

70 -8+/70 -~ 42+5/70 - 7+/70 -
105 %(—9+/105) - %<7+/105) - 21+2/105 -
210 - - 14+/210  15+/210 - -




Table IV,

D a I I D a I I D a 1 I
2 1 - 2357 14 4+/14 - 7 35 1 - 2357
1 7 235 L/14 5 7 /35 - 23
Y2 - 37 742414 - 2 5+/35 - 7
Y2 7 35 7+2/14 5 2 7+/35 - 5
3 1 - 2357 15 1 - 2357 42 1 - 2357
Y3 - 2 7 1 7 235 /42 - -
1+/3 - 3 /15 - 2 6+/42 - 57
3+/3 - 5 /15 702 7+/42 - 3
5 2 - 2357 3+/15 - 57 70 1 - 2357
2/5 - 237 3+/15 7 5 1 3 257
6 1 - 2357 5+/15 - 3 Y70 - -
1 5 237 5+/15 7 3 Y70 3 -
/6 - 57 14+/15° 7 35 2543/70 - 37
/6 5 7 154715 7 - 2543/70 3 7
2+/6 - 3 6—/15* 7 25 42+5/70 - 5
*
2+/6 5 3 -5+2Y15 7 23 42+5/70 3 5
3+/6 -~ - 21 2 2357 7+/70* 3 5
34/6 5 2 2 5 237 10+/70° 3 7
71 _ 2357 2/21 - 25 —8+/70" 3 57
1 3 257 221 5 2 35-4/70° 3 2
Y7 - 2 34+/21 - 2 7 [|105 2 2357
/7 3 25 3+/21 5 2 7 2 2 357
3+/7 - 7 7+/21 - 23 2/105 - 2
3+/7 3 57 7+/21 5 23 2/105 2 -
7+3/7 - 35 30 1 - 2357 20+2/105 - 23 7
7+3/7 3 5 1 7 235 2042/105 2 37
10 1 - 2357 /30 - - 42444105 - 25
1 3 257 /30 7 - 42+44/105 2 5
/10 - 37 5+/30 - 37 744105 2 35
/10 3 7 5+/30 7 3 154/105" 2 7
—2+/10% 3 57 64730 - 5 ~94/105% 2 57
5-/10° 3 2 7 6+/30 7 5 35-3/105° 2 3
14 1 - 2357 34/30% 7 5 210 1 - 2357
1 5 237 104/30° 7 3 J210 - -
/14 - 35 —4+/30% 7 35 144/210 - 35
/14 5 3 15-2/30° 7 2 154/210 - 7
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Table V.
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Table VI.

D p:,L Vi /\i (i€1;’)
21 235 300 1.5 0 0
6| 237 310 1.5 0.5 0
701 257 201 1 o 0.5
0| 257 310 1.5 0.5 0
wl| 237 301 1.5 0 0.5
15| 235 211 1 0.5 0.5
21 237 211 0 0.5 0.5
30| 235 311 1.5 0.5 0.5
70 257 311 1.5 0.5 0.5
05| 357 111 0.5 0.5 0.5
D a n n n, n, n. n I I* N K C*
e m 2 3577 U U 12
2 1 00 0000 235 235 3 0 3190x10°°
/2 001000 35 235 2 0 3.190x10°%
6 1 000000 237 237 3 0 2712x10%°
Y6 0 01 1 0 0 7 27 2 0 4.604x10%2
2+/6 101000 3 23 20 2.090x10%2
34/6 100100 2 2 3 30 2.090x10%?
7 1 000000 257 257 2 0 1.065x10°0
Y7 0 0 0 0 0 1 25 25 2 0 2.146x10%8
34+/7 101000 57 257 1 0 1.065x1o38
743/7 101001 5 25 1 0 2.146x10%°
10 1 000000 257 257 3 0 3.214x10°°
/10 001010 7 27 2 0 8.414x10%%
24/10 | -1 1 1 0 0 0 57 257 2 1 3.214x10%°
510 | -1 1 0 0 1 0 27 27 31 8.414x10%%
14 1 000000 237 237 3 0 4.791x10%°
/16 00100 1 3 23 20 4.347x10%2
414 101000 7 27 2 0 8.143x10%2
742/14 10000 1 2 2 3 0 8.371x10'8
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Table VI. (cont.)

D a n n n,n,nn n7 I N K C:z
15 1 000000 2 23 2 0 2.144x10°8
Y15 0 0 01 10 2 2 2 0 9.427x10"°
34/15 101100 5 25 1 0 1.69x10%%
54+/15 101010 3 2 3 1 0 1.035x10%%
1+/15 01 1 0 00 3 23 1 1 2.144x10%8
15+/15 01 1 1 10 2 1 1 9.427x10%°
6-/15 -1 1. 010 0 2 25 2 1 1.69%x10%%
542/15 | -1 1 0 0 1 0 2 23 2 1 1.035x10%%
21 2 002000 2 23 1 0 1.898x10%°
2/21 002101 2 2 0 0 2.640x108
34/21 102100 2 27 1 0 3.220x10%2
74/21 102001 2 23 1 0 1.435x10%2
30 1 000000 2 23 30 4.141x10°8
/30 001110 2 2 0 2.022x10%°
54/30 100010 3 23 3 0 2.217x10%"
6+/30 101100 5 25 2 0 3.276x10%%
3+/30 01 01 00 5 25 31 3.276x10%%
10+/30 o1 1010 3 23 2 1 2.217x10%%
4+/30 | -1 1 1 0 0 0 3 23 2 1 4.141x10%8
15-2/30 | -1 1 0 1 1 0 2 2 3 1 2.022x10%°
70 1 000000 2 25 30 3.229x10°°
/70 0010 1 1 2 2 0 2.115x10%t
254370 | 1 0 0 0 1 0 7 27 30 8.482x10%°
4245770 | 1 0 1 0 0 1 5 25 2 0 7.003x10%°
74/70 0100071 5 25 31 7.003x10%°
10+/70 o1 1010 7 27 2 1 8.482x10%°
8+/70 | -1 1 100 0 5 25 2 1 3.220x10°°
35-4/70 | -1 1 0 0 1 1 2 2 31 2.115x10%t
105 2 002000 3 35 1 0 4.533x10%°
2/105 002 1 1 1 0 0 4.295x10%°
2042/105 | 1 0 2 0 1 0 3 37 1 0 1.690x10%°
42444105 10 2 1 0 1 5 5 1 o0 8.655x10%°
74/105 | 0 1 2 0 0 1 3 35 1 1 1.396x10%°
15+/105| 0 1 2 1 1 0 7 7 1 1 1.049x10%}
94/105 | -1 1 2 1 0 0 5 57 1 1 2.485x10%°
35-3/105 | -1 1 2 0 1 1 3 3 1 1 5.880x10%°
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CHAPTER 8. THE THUE EQUATION.

Acknowledgements. The research for this chapter has been done in cooperation
with N. Tzanakis from Iraklion. The results have been published in Tzanakis

and de Weger [1987]). See also Tzanakis [1987] and de Weger [1987b].

8.1. Introduction.

Let F(X,Y) € Z[X,Y] be a binary form with integral coefficients, of
degree at least three, and irreducible. Let m be a nonzero integer. The

diophantine equation
F(X,Y) = m

in X, Y € Z is called a Thue equation. It plays a central role in the
theory of diophantine equations. In 1909 Thue proved that it has only
finitely many solutions (cf. Thue [1909]). His proof was ineffective. An
effective proof was given by Baker [1968]. See Chapter 5 of Shorey and
Tijdeman [1986] for a survey of results on Thue equations. By using Lemma 2.4
in Baker’'s argument, we derive a fully explicit upper bound for the solutions
of the Thue equation. Then we show how the methods developed in Chapter 3 can
be used to actually find all the solutions of a Thue equatiom. Our method
works in principle for any Thue equation, and in practice for any Thue
equation of not too large degree, provided that some algebraic data on the

form F are available.

Variants of the method we use here have been used in practice to solve Thue
equations by Ellison, Ellison, Pesek, Stahl and Stall [1975], Steiner [1986],
Pethé and Schulenberg [1987}, and Blass, Glass, Meronk and Steiner [l987a],
[1987b], When determining all cubes in the Fibonacci sequence, Pethé [1983]
solved a Thue equation by the Gelfond-Baker method, but with a completely

different way to find all the solutions below the upper bound.
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8.2. From the Thue equation to a linear form in logarithms.

In this section we show how the solution of the general Thue equation implies
an inequality involving a linear form in the logarithms of algebraic numbers

with rational integral coefficients (unknowns). Let

n . -
F(X,Y) = ¥ fi~x“'1-y1 € Z[X,Y]
-0

1

be a binary form of degree n > 3 and let m be a nonzero integer. Consider

the Thue equation
F(X,Y) = m , (8.1)

in the unknowns X, Y€ Z . If F 1is reducible over @ , then (8.1) can be
reduced to a system of finitely many equations of type (8.1) with irreducible
binary forms. For such equations of degree 1 or 2 it is well known how to
determine the solutions. Therefore we may assume from now on that F is
irreducible over @ and of degree = 3 . Then we may assume from now on that
F is irreducible over @ . Let g(x) = F(x,1) . If g(x) = 0 has no real
roots then one can trivially find small upper bounds for max(|X],|Y]|) for

the solutions (X,Y) of (8.1). Therefore, throughout this chapter we suppose

that the algebraic equation g(x) = 0 has at least one real root. We number
its roots as follows: 5(1), §<S) ( s =21 ) are the real roots and
§(S+1) = §(s+t+1), o, E(s+t) = §(S+2t) are the non-real roots, so that we

have t ( > 0 ) pairs of complex-conjugate roots, and s + 2:-t =n .

Consider the field K = Q(¢) , where g(¢) = 0 . We will define three

positive real numbers Yl < Y2 < Y3 , that will divide the set of possible

solutions (X,Y) of (8.1) into four classes:

I) the ’‘very small’ solutions, with Y] =< Y1 . They will be found by
enumeration of all possibilities,
I1) the ’'small’ solutions, with Y1 < |Y| = Y2 . They will be found by

. . : - i
evaluating the continued fraction expansions of the real §( )'s

II1) the 'large‘' solutions, with Y, < |Y| =Y They will be proved not to

2 3
exist by a computational diophantine approximation technique,

1V) the ’'very large' solutions, with |Y| > Y They will be proved not to

3
exist by the theory of linear forms in logarithms.

The value of Y3 follows from the Gelfond-Baker theory of linear forms in

logarithms. The value of Y2 follows from the restrictions that we use as we
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try to prove that no 'large’ solutions exist. The value of Yl follows from

Lemma 8.1 below. This lemma shows that if |Y| 1is large enough then X/Y is
'extremely close’ to one of the real roots 6(1) In a typical example Y3
50

may be as large as 1010 , Y2 as large as 1010, and Y1 as small as 10.

LEMMA 8.1. Let X, Y€ Z satisfy (8.1). Put 8 =X - €Y ,

Zn_l-!m| 1/n
min Ig'(5(5+1))|~ min |Im f(s+1)| if t=1
YO = 1<i<t l<i<t s
1 if £=20
n-1
2 - |m] : .
: 1 . (i) ()
c, = . , (1) , C, == min |& -£ |,
L min jg’ (€ 7)] 22 1cicjen
1<i=<s
B L~ y1/(n-2)
Y, = max [ Y, [[a c,) ] ]
(i). If |Y| > YO then there exists an io e (1, ..., s} such that
(iy)
0 -(n-1
18 01 <o ym Y
18 > C,r 1Yl for ie (1, ...,mn), i=ig
(ii). If |Y| > Yl then X/Y is a convergent from the continued fraction
(io)
expansion of £
(o) (1)
Proof. Let io e {1, ..., n} be such that |8 | = min |8 | We
l<i=n
have from (8.1)
n .
i
151 111851 = i
i=1
(1)
By the minimality of |B | we have for all i
S () S () . (iy)
i 0 i 0 i 0 i
MO AR IR A N IR R IR AR I N A
Hence (81 = C, Y| . Further,
(i) : . (i,) -1
0 m iy, -1 1 i 0
o - s < e [Fve - |]
ol iq 1ol g (2
0 0
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n-1

n—l'

- 2 " |m| - 2 [mf
. (i,) (i)
i 0 -1 0 -1
|£o- T e O™ e Ty
iri
0
Now, if io > s (and hence t > 1 ) then, by the definition of YO ,
. (i)
i 0 -1
X - ! 0)| s O 2w
Y Yy - (i) - 1Y
e )]
Y n :
< [_Q—J . min  (Im &P
lYl s+l<i<s+t
which is impossible if |Y| > YO Hence io < s , and now (i) follows at
once. Moreover, if |Y| > Y1 , then
(i) (i)
X 0 0 -1 -n 1 ,n-2 n 1 -2
T-¢ T -8 DT sep T e T s Ly T
i) (i)
and thus | % - 9 < §-|Y[_2 , since ¢ ° is irrational. Now (ii)
follows from a well known result on continued fractions, cf. (3.6). O
Now let Y| > Y1 and iO e {1, ..., s )} as in Lemma 8.1. Choose
i, ke {1, ., n } such that iO’ j, k are pairwise distinct and either
i, ke(l, ..., s) or j+t=%k (so that ¢ _ )y pue further the
choice of j, k 1is free. By ﬂ(l) =X - Y~5(1) for 1 = io, j, k we get,
on eliminating the X and Y ,
(i) ; : (i,) (iy) :
0 k k 0 k 0
B -[f(J)—ﬁ( )] + ﬁ(J)-(f( )—f ) + 5( )'[5 ‘f(J)J -0,
or, equivalently,
i . . i
o)y L w G o
£ —£ B 4. ¢ £ i
i) G5 CHNNRNGY (8.2)
0 k k 0
(000 B (0, B
By Lemma 8.1, the right hand side of (8.2) is ‘extremely small’. Put, if
i, ke {1, ..., s} (let us call it ’'the real case’)
i .
A UENEPIGS!
A=log | gy NG
RO A
and if j, ke { s+1, ..., s+2:t ) (let us call it 'the complex case’)
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(k)

(i) Gy |
e 00 B

where, in general, for =z € € , Log(z) denotes the principal value of the
. (k) _ ()
logarithm of =z (hence -n < Im Log(z) <« ). By ¢£ = £ we have
Ae€eR and |[A] =7
The following lemma shows how small |A| 1is.
LEMMA 8.2. Put
RUTR
C, = max T~ ,
i ki wi i (ip (i3
1772 73 "1 ¢ - £
* 1/n
Y2 = max [ Yl’ {(2~C1-C3/C2) w ]
*
If Y| > Y2 then
1.39-C.-C
’ 1 73 -n
|A] < ————= 1Y
2
*
Proof. Consider first the real case. From Yy > Y2 and Lemma 8.1 it
follows that the right hand side of (8.2) is absolutely less than % and,
consequently,
i .
Y gy w0
¢ - gt
(i) () ﬂ(j>
3 -

It follows that the left hand side of (8.2) is equal to eA—l , and now (8.2)

implies, in view of Lemma 8.1 and the definition of C

3
) —-(n-1) )
le*-1] < ¢ S O c3-|Y;_“
3 C2-|Y] C2
On the other hand, |eA—1| < % implies (cf. Lemma 2.2)

[A] < 2-1og 2-1eM-1] < 1.39- 1)

which proves our claim in the real case.
in

In the complex case the left hand side of (8.2) is equal to e -1 , and, as

in the real case, we derive
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C.-C

ety « L2yl
C 2
2
Since |eP-1] = 2-|sin A/2] , it follows that |sin A/2| < % , and therefore
by Lemma 2.3
Al < 2—2% st az2) = —A ety < 1021y,
sin 1/4 sin 1/4
which proves the lemma in the complex case. O

In the ring of integers of the field K (as well as in any other order R
of K ) there exists a system of fundamental units €1s cen €L where
r =s + t - 1 (Dirichlet’s Unit Theorem). Note that since F {is irreducible
and we have supposed s > 0 , the only roots of unity belonging to K are
+1 . We shall not discuss here the problem of finding such a system (for
efficient methods see e.g. Berwick [1932], Billevig [1956], [1964], Pohst and
Zassenhaus [1982}, Buchmann [1986], [1987]). We simply assume that a system
of fundamental units is known. On the other hand, there exist only finitely
many non-associates Byv e B, in K such that fO~N(pi) = m for

i=1, ..., v . (We use N(-) to denote the norm of the extension K/Q .) We

also assume that a complete set of such pi's is known. Let M be the set

of all §-pi , where ¢ 1is a root of unity in K . (In the important case
|f0| = |m| =1, it is clear that M = { -1, 1 } ). Then, for any integral
solution (X,Y) of (8.1) there exist some u € M and aj, ..., ay e 7 ,
such that
a a
1 r
B = Breg €L

Thus, the initial problem of solving (8.1) is reduced to that of finding all

a a
integral r-tuples (al,...,ar) such that Boeg ~...-err for some u € M be

of the special shape X - Y-£ , with X, Y € Z . As we have seen, X and Y
can be eliminated, so that we obtain (8.2). Thus the problem reduces to

solving finitely many equations of the type

. : . (i )~a.,
(i . (x)) %1 . (i) 0 %1
g V) 0 e L S UL B
(i) Gy U 0 ) (i) Gy U )
¢ 0 -E(k) M i=1 € E(k)—§ 0" u i=1 €

(the so-called ‘unit equation’). In the real case we have
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(i) .
07 (3 (k) r
A = log €(1 )_6 . ”(j) + E aivlog tj) , (8.3)
¢ 0 —§(k) b i=1 €
and in the complex case
g(io)_g(j) “(k) E Eik)
A = Arg r . - + a,-Arg - + a, 27 , (8.4)
(10)_§(k) w3 I IS 2

£

1

with a; € Z , and -m < Arg(z) < n for every z € C . Note that A in the

real case, and 1i:A in the complex case, is a linear form in (principal)

logarithms of algebraic numbers, where the coefficients a; are integers.

The Gelfond-Baker theory provides an explicit lower bound for |A| in terms
of max|ai] . Using this in combination with Lemma 8.2 we can find an
explicit upper bound for max|ai| . This is what we do in the next section.

8.3. Upper bounds.

Let A = max |a.| . First we find an upper bound for A in terms of |Y|
I<i=r
LEMMA 8.3. Let I = { hl’ . hr yc{1l, ..., n} . Put
(h.)

1
Up = (logle, ljlsiSr,lstsr ’

(where 1 indicates a row and { a columm of the matrix),

-1 -1 s
U = (u,,) , N[U "] = max Z ju.
L e I l<i<r £=1 it
Put also
_ min , (1) _ max (i)
L P L P P L
ueM pueM
L max ﬁ(ll)—ﬁ(IQ)
2 1<i.<i Snl I
c - 172
4 B_ ’
. . -1 -1
C. = min [ (n-1) min N[{U_"], max N[U_7] ]
5 I 1
1 1
Then, for

187



1/n
1Yl > max (¥, 2-1m>7, w,/c, ),

we have
A< Cs-log[CA~|Y|) .
! ar
Proof. By B8 = preg e T we have
(b)) (h)
loglp = /u | a
= U . (8.5)
a
(h) (B r
log|p /B |
On the other hand, for every he€ (1, ..., n} , using the end of the proof
of Lemma 8.1,
(i) (i)
h h 0 0 h
1B = xey e ™ < xve O v ygge O™
i)
1 ) 0" .(h)
< ooy tIYEIE D 60
(i) (1)
1 max 1 2
< [ P 1<i, <i $n|€ - l ]'lYl ’
172
and therefore
ﬂ(h)
L) <ClY| for h=1, ..., 0.

Note that CA-|Y| > 1 . Indeed, by

n .
i m
IR LY
i=1 0
it follows that min [p(1)| < |m|1/n , hence p =< ]mll/n . Therefore
1<i=<n
(i) (1)
1 max 1 2 -1/n [ Y|
C, Yt = (= + ,_. 0 _|€ -£ [ J-1Y]-m] > il s
4 2 1511<125n 2]m|1/n
Then,
(h)
log ;?F7 < log(C, IY]) for h = 1,...,n, log(c,-|Y|]) >0 . (8.6)
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Next we show that

(1)

B~ -1y - . { -
log ol < (n-1) 1og[C4 Y[} for i=1, ..., n. (8.7)
7
. . . . . : (i), (1)
Indeed, in view of (8.6), a stronger inequality is true if |8 e | =1
Suppose now that |ﬂ(l) (1)| <1l . By
n h
I "Ehi !
h=1|p
it follows that
(1) (i) z ﬂ
log (1) ‘ = -log NE) log _?_7 < (nwl)~log[C4-|Y|J ,
h#l #
in view of (8.6). Now the inequality
. -1
A < (n-1) -min N[UT"}-log(C,|Y])
I I 4
follows from (8.5), (8.7), the definition of N[U;l] and the fact that, as
we have not put so far any restriction on I , this could be chosen so that

N[U;l] be minimal. It remains to show that

A < max N{U
1

teg(e, 1D

Choose I such that i. ¢ I . Then, by Lemma 8.1, for every h e I |,
0
(h)/#(h)

|8 | > C2-]Y|/u+ > 1 and now, in view of (8.6),
(h)
Log =y | < log(C,-1Yl)
I
which implies our assertion. O

Lemmas 8.2 and 8.3 immediately yield

LEMMA 8.4. Put

n
1.39-C.-C,-C
: 17737 . * 1/n
Cg = ————— ., Y, =max (Y, 2-|n|

. B, /C, )
’ + 72

If |Y| > Yé then

A < CG-exp(%E-AJ .
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Next we apply Lemma 2.4 (Waldschmidt). It yields in the real case (assuming

that A = 0 )

A > exp[~c7-<1og A+ 08)) , (8.8)
and in the complex case this holds when A is replaced by A’ - max |a |
O<i=<r
The precise values for C7 and C8 are given in Section 2.3. It should be

noted that in the complex case a makes now its appearance, while it was

0
not present in Lemmas 8.3 and 8.4. In order to obtain an upper bound for A ,
we must find an upper bound for A’ in terms of A . Indeed, using the
relation

Arg(zl‘zz) = Arg(zl) + Arg(zz) + k20 , ke { -1, 0, 11} ,

we find from (8.4) and the proof of lemma 8.2 that IaO] < % + %-r-A + |Al/2n

<1+ 71r-A=<r-A if A = 2 . Thus we may apply (8.8) in both cases with A

if we replace CB by Cé , where
C8 = CS in the real case,
Cé = C8 + log r in the complex case.

We can now give an upper bound for A .

LEMMA 8.5. Put

2-C5 CS-C7
cg=——n—-[1og Co + C,Cy + C,-log — )
If Y} > Y2 , then A< C9
Proof. As we have seen in the proof of Lemma 8.2, |eA—1| < % in the real
iA 1 (iO)
case, and Je -1} < Py in the complex case. Note that 8 » 0 . Hence
(8.2) implies A = 0 . Therefore Lemma 8.4 and (8.8) yield
CS
A< H—'( log C6 + C7~C8 + C7-log A ) .
The result now follows from Lemma 2.1. 0
Remark. From this upper bound for A an upper bound for 1Y can be
derived, thus a value for Y3 (cf. Section 8.2). We shall not do this. Note
that Yé (cf. Lemma 8.4) is not necessarily equal to Y2 (cf. Section 8.2).
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8.4. Reducing the upper bound.

We are now left with a problem of the following type. Let be given real

numbers §, R “q (q=22, the case q =1 1is trivial). Write
A=6+ a) by + ...+ aq~pq s
where the ai’s belong to Z , and put A = max |a | . If Kl’ KZ’ K3 be
1<i<q
given positive numbers, then find all q-tuples (al,...,aq) e 24 satisfying

|Al < Kj-exp(-K,-A] , A <K (8.9)

3

In our case, it follows from (8.3) or (8.4) how to define q, § and the

ui’s , and from Lemmas 8.4 and 8.5 how to define Kl’ K2, K In general,

3

Kl and K2 are 'small’ constants, whereas K3 is 'very large'. Put

so that A =§ + A, . We apply the methods of Chapter 3 to problem (8.9).

Below we distinguish three cases. In the first two we suppose that the pi's
are QO-independent.

(i). Let § =0 , so that A = AO . Then the linear form is homogeneous, and
we apply the method of Section 3.7.

(ii) Let § = O . Then the linear form is inhomogeneous, and we apply the
method of Section 3.8.

(iii). Suppose now that the ui’s are Q-dependent. Let r be the
approximation lattice for the linear form A , as defined in Section 3.7.
Then we expect the lower bound for x| (xeT , x =0 ) 1in general to be
'very small’, since the vector having as coordinates the coefficients of the
dependence relation will give rise to a very short vector in the lattice. So

the reduction process, as applied in the two previous cases, will not work.

In such a case we work as follows. Let M be a maximal subset of
(pl,...,pq) consisting of Q@-independent numbers. With an appropriate choice
of subscripts we may assume that M = { Bps oo up } , P < q . Then we can
find integers d > 0 and dij for 1 <1i=<p, p+tl = j =< q such that

p .

d-pj = .Z dij-pi for j =p+l, ..., q

i=1

(These numbers d, dij can be found as coordinates of extremely short

vectors in reduced bases). On the other hand, (8.9) is equivalent to
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[A*] < Kl-exp[—K2-A) . A <Ky, (8.10)
where A’ = d-A and Ki - d-K1 . Now, with §' = d-§ and
q
a; = d-a, + Y. a,
jop+1
we obtain
p
e
i=1
Put D = max [ |d], |dij| :1=<i<p, ptl<j=<q) . Then
|a£] < (q-p+1) DA for i=1, ..., p
Therefore, if we put A' = max |a£| , then A’ < (q-p+1)-D-A , and (8.10)
1<i<p
implies
[A"| < Kj-exp(-Kj-A') , A’ < KS (8.11)
where
Al =68 + al-ul + ...+ ap‘“p R Kl = d‘K1 R

Ky = Ky/(q-14p)-D , Kj = (q-p+1) K,

i

Now, to solve (8.11) we apply the reduction process described in (i) or (ii),

depending on whether &' = 0 or 6§’ = 0 , and maybe more than once, if
necessary, until we find a very small upper bound for A’ . After having
found all solutions (ai,...,aé) of (8.11), we have a lower bound L > 0
for |A’|] . It is reasonable to expect that L 1is not 'extremely small’

1
make JA" "extremely small’. Now combine jA'l = L with the first

because the integers a . aé being 'small’ in absolute value cannot

inequality of (8.10) to get
K
1 1
A< E;-log[z—)

Since L 1is not 'very small', as argued heuristically, the above upper bound

for A is 'small’.

Returning now to the general case, we point out that if the reduced upper

bound for A (found after some reduction steps as described above) is not



small enough to admit enumeration of the remaining possibilities in a
reasonable time, then it might be necessary, or at least advisable, to use
the technique of Fincke and Pohst, cf. Section 3.6. However, when solving a
Thue equation, and not only an inequality for a linear form in logarithms, it

may be better to avoid this method, and to use continued fractions of the

roots 5(1) In practice we can search for the solutions (X,Y) of (8.1)
satisfying Y1 < Y] = C as follows, referring to Lemma 8.1. Here e.g.
Cc = Y2 , and we can imagine C here as being a 'large’ constant compared to
Y1 , but not 'very large’ (cf. the introduction of Yl’ Y2 in Section 8.2).
) (iy)
Let £ be a rational approximation of ¢£ , such that
(i)
= 0 1
1£-¢ I < 5 - (8.12)
6-C
Since |Y} > Yl , X/Y must be a convergent, pk/qk say, from the continued
(i)
fraction expansion of 13 0 . Denote by ay, Ay, g, .- the partial
quotients in this expansion. First we claim that a1 > 3 . Indeed, we have
by (3.5)
1 1 (o) Py L !
= 5 < 1€ - a‘l = 1€ -3l = o
(a1 *2) - 1Y1° (a,,+2) g K Y|
If a1 = 1 or 2 , then we would have |Y|n_2 < A-Cl , which is absurd,
. 1/(n-2)
since {Y| > Y1 > (4-01) . Thus, a1 > 3 , and by (3.5) we have
(ig) 1 L
]50—~15|<a 4253.2'
R k1l R"
Therefore,
L P o ) o) P 1 1
Ig—‘*lslf_g I+|E _C{_l< 2+ 25 2
A k  6C" 3.q 2q

and this means that pk/qk is in fact a convergent from the continued

fraction expansion of £ too. Moreover, in view of the inequalities

1 o) pe G 1
e LI e
(e, 172) gy koY gyl
a ,p must be sufficiently large compared to q namely
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n-2
lagl
a > ———— - 2 . (8.13)

k+1 C1

This inequality can be checked easily for all k such that <C

9

(i)
To sum up, we propose the following process for every real root ¢£ 0 for

i =1, ..., s (note that i is a priori not known). (1) Compute a

0
_ (i)
rational approximation € of ¢ satisfying (8.12) (a truncation of its

decimal expansion will do). (2) Expand E into its continued fraction with

partial quotients aO, al, a2, e, ak+1 and convergents pi/qi for all
i=1, ..., kK with q < C < U1 (3) Test all these convergents for the
conditions (8.13) and F(pi,qi) = m . Concerning this last test, note that if
X/Y = pi/qi , then X = Z-pi , Y = Z-qi for some Z € Z with 2" | m

This simple observation excludes in general most of the reducible quotients

X/Y , and all of them if m is an n-th-powerfree integer.

Having tested for all solutions in the range |Y| < C we may suppose that
|Y| > € . For such solutions (X,Y) we can obtain a lower bound for the

corresponding A as follows (the idea is due to A. Pethé, cf. also Section 1

of Blass, Glass, Meronk and Steiner [1987b]). For every (i,j) € {1,...,r} x
N VI
(1,...,n} let wij be the number +1 or -1 for which ]ng)[ U | R
r
and put E, = ﬂ (J) . Then
J i=1
4y S I A
I P T | P B o
i=1 J

and hence for any pair jl’ j2 with j1 #~ j2 we have

: . A A
ﬂ(Jl)—ﬁ(Jz)I Ej1 + Ej2
G PO G 7 A C IR G PO
e Ve le 71 -

and from this we can find a lower bound for A , if we know that |[Y| > C

0f course, for an other pair we may find a different lower bound,

jl’ j2
and therefore we can take the larger one.
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.5. An application: integral points on the elliptic curve
3

8
y2 =x - 4:x + 1

In this section we prove, as an application of the general theory described

in the previous sections, the following result.

THEOREM 8.6. The elliptic curve
ek cax 41 (8.14)
has only the following 22 integral points:

(x,%y) = (=2,1), (-1,2), (0,1), (2,1), (3,4), (4,7), (10,31),

(12,41), (20,89), (114,1217), (1274,45473)

We prove this theorem in two main steps. First, we reduce the problem to the
solution of two quartic Thue equations. Then we solve these equations using

the general theory developed in the previous sections.

Let L be the totally real field Q(y) , where

¢3 -4p+1=0
Let the conjugates of Y be ¢(1) = 0.25%..., ¢(2) = -2.114...,
¢<3) = 1.860... . From a table of Delone and Faddeev ([1964], p. 141) we see
that the class number of L is 1, its ring of integers is Z[¢¥] , its
discriminant is 229, and a pair of independent units is ¥, 2 - % . From

Table I of Buchmann {1986} we see that -7 + 2-¢2, 2.y + ¢2 is a pair of
fundamental units in Z[y] . Since -7 + 2~¢2 = —¢-1-(2—¢) and
2.9 + ¢2 = (2—1,b)-1 we see that ¢, 2 - ¥ 1is also a pair of fundamental

units in Z[¥]

The equation (8.14) of the elliptic curve can be written as

R G N T S S LI (8.15)

and the factors on the right hand side are relatively prime. Indeed, if =«

were a common prime divisor of them, then = would divide

(2 xpt Bm) ) - (x+29)(x-%) =3¢ -4,
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which is prime, since its norm is -229. Therefore we would have that =« is a
unit times this prime, and then by (8.15), X - P = unitx(3-¢2—4)xsquare

Take norms, then we get y2 = +229xsquare , which is clearly impossible.
Now (8.15) implies
2

x -y =+t e’ aezyl, i, jel0, 1) . (8.16)

Since (8.14) is trivial to solve for x < 0 (the only solutions with x < 0

are the first three pairs stated in the theorem), we may assume that x 2 1

Since w(l) = 0.254... , we see that the minus sign in (8.16) is impossible.
Then, by ¢<2) = -2.114... , 1 % 1 . We conclude therefore that
j 2.2 .
X — %= (2-¢9) (utv-p+wp" )", u, v, welZ , je {0, 1) . (8.17)
First case: j =10 . Then (8.17) implies, on equating corresponding

coefficients in both sides,
X = u2—2~v-w, w2—2~u~v—8-v-w =1, v2+4~w2+2-u-w =0 . (8.18)

Note that w 1is odd and v 1is even, hence 4 | 2:-u-w , so u is even. Put

u =2 U, Vo= 2 vy The last equation of (8.18) now reads
w2 +u,cw+ v, =0
1 1
Consider this as a quadratic equation in w . Its discriminant must be a

square, 22 say. Then

Note that u, and =z have the same parity. We may assume u 2 0

1
First suppose that uy and z are even. Since w2 + uy W + v% =0 and w
is odd, we find u, = 2 (mod 4) , and v is odd. Put u, = 2-u, ,
21 2 5 1 1 2
z =2 zy - Then uy, - vy o=z, where u, and v, are odd. By u, z 0

there exist m, n € Z such that

It follows that
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u = 4-(m2+n2) , v o= 2-(m2—n2) , W = —(min)2

Since the sign of =z , and thus that of n , is of no importance, we may
2 . . : .
assume w = —(mtn) . After substitution in the second equation of (8.18) we

obtain the Thue equation

/
m' o+ 36-m3-n + 6~m2~n2 - 28-m~r13 + na =1

The left hand side can be factored as

(m+n ) -( m3 + 35-m2~n - 29-m4n2 + n3 ),
and therefore it can be solved very easily. 1Its only solutions are
*(m,n) = (1,0), (0,1) . They lead to *(u,v,w) = (4,2,-1), (4,-2,-1) , and
then by (8.18) we find x = 20, 12 respectively, which furnish the solutions
(x,*y) = (20,89), (12,41) for (8.14).

Secondly, we suppose that uy and z are odd. Then vy is even, so by
uy > 0 there exist m, ne€ Z with
u1 = m2 + n2 R 2~Vl =2mn , z = m2 - n?

It follows that

2.2
u=2-(m+n") , v=2-mn w = -m or W = -n

s

2 . . A .
We may assume that w = -m~ . Substituting this in the second equation of

(8.18) we find the Thue equation

mA + 8-m3-n - 8~m~n3 =1
The left hand side is again reducible. The only solutions, as is easily seen,
are *(m,n) = (1,0), (1,1), (1,-1) . Since m and n cannot have the same
parity, only the first pair is accepted. It leads to (u,v,w)y = (2,0,-1) ,
and hence to (x,*y) = (4,7) for (8.14).

Second case: j =1 . Then, equating the coefficients in (8.17) we get

X = 2-u2 + v2 + 4~w2 + 2-uw - 4veow (8.19)

9 (8.20)

{ u2 + 4-v2 + 18vw2 ~4u-v+ 8uw-18v.w=1,
L 2-v2 + 9w - 2uv+buw-~- 8vw=20
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The first relation of (8.20) can be replaced by
2
u - 2vew =1 . (8.21)

Note that u 1is odd. Put z = v — 2-w . Then the second equation of (8.20)

yields

w o= 2-z-(u-z)

First we suppose that z is odd. Then there exist m, n € Z such that

z = m2 , U=z =2 n2 ,
where we use that u= 0 and (u,w) = 1 . Thus, choosing signs properly,
u = m2 + 2-n2 , VvV = m2 +4-mn , w=2-mn .

Substituting this in (8.21) we obtain the Thue equation

ma - 4-m3'n - 12-m2~n2 + A-nA =1 . (8.22)

In Theorem 8.7 below we prove that this equation has only the solutions
+(m,n) = (1,0) , leading to (u,v,w) = (1,1,0) , and finally for (8.14) to
(x,ty) = (3,4)

Secondly we suppose that =z 1is even. Then there exist m, n € Z with

Thus, choosing signs properly, we find
u = 2~m2 + n2 , V= 2~m2 + 4-mn, w=2-mn .

Now, substituting into (8.21), we obtain the Thue equation

2 - 12020’ - 8w’ + 4n” = 1. (8.23)
In Theorem 8.7 below we prove that this equation has only the solutions
+(m,n) = (0,1), «(1,-1), (3,1), (-1,3) . They lead respectively to
(u,v,w) = (1,0,0), (3,-2,-2), (19,30,6), (11,-10,-6) , which lead for (8.14)
to the solutions (x,*y) = (2,1), (10,31), (1274,45473), (114,1217) . Thus
this result completes the proof of theorem 8.6, provided the Thue equations
(8.22), (8.23) have as their only solutions the pairs (m,n) mentioned

above. We now proceed to prove this.
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THEOREM 8.7. (i). The Thue equation

4 3 2 2 4

X - 4.X7Y - 12:X7Y"  + 4. =1 (8.24)
has only the solutions *(X,Y) = (1,0)
(ii). The Thue equation

X4 - 12~X2-Y2 - 8~X-Y3 + a-Y4 =1 (8.25)

has only the solutions *(X,Y) (1,0), (1,-1), (1,3), (3,-1)

Proof. We use the notation and results of Sections 8.2 and 8.3.

Let the algebraic numbers 9 and ¢ be defined by

04 - 12-02 -89 +4 =0, wa - 4-¢3 - 12-w2 + 4 =0
Since ¢ = 2/9 , it follows that © and ¢ generate the same field K over
0 . In the notation of Section 8.2 we have n =4, s =4, t =0, and ¢ = 9

or £ = ¢ . Simple computations show that for ¢ =9, ¢ we can take

YO =1, C1 = 0.843 , 02 = 0.589 , Y1 =2, C3 = 6.645 ,
Y -3 1, C, =8.3374
2 - ’ /“_ - l‘+ - b 4 - .
In these computations we estimate Cl, C3, C4 from above and C2 from

below, making use of the following approximations for the conjugates of o

and ¢ :

o™ = _1.080 286 352 , o1 = —1.851 360 980 ,

5% = 3722 935 260 , o2 = 0.537 210 524 |

03 = 0334 111 716, o) = 5.986 021 747 ,

8 = 22,976 760 624 , »*) = —0.671 871 290
Now we work in the order R of K with Z-basis {1, 9, %~é2, %-63 }
(note that %‘62 is an algebraic integer). Note that

2 13
p=s-b+60-29 cR .

On the other hand, (8.24) and (8.25) are respectively equivalent to
NormK/Q(X—Y~0) =1 and NormK/Q(X—Y~w) = 1 , which means that if (X,Y) is
a solution of (8.24) or (8.25), then X - Y-® or X - Y-¢ , respectively, is

a unit of the order R . A system of fundamental units of R is given by
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€ = 1 +9, €, = 3+9, €, =

We do not prove this fact here. For a proof, see Tzanakis and de Weger [1987)

Section II1.2 and Appendix I.

Thus the solution of (8.24) and (8.25) 1is reduced to finding all

3 1 2 3
i . «
(al,az,aa) e Z such that the unit iel € €3

X - Y8 or X - Y-¢ , respectively. In the notation of Lemma 8.3 we have,

has the special shape

after some numerical computations, that we leave to the reader to check, that

-1

I ] = 1.210070... ,

min N[U—l] = 0.634950... , max N[U
I I I

(here, of course, I = { 1, 2, 3, 4 ) ). Therefore we can take in Lemma 8.4

C5 =1.211

Also,
C. = 6.38771x10% , y¥! = 3
6~ & RS

(The values of C5 and C6 are estimated from above.)

Now, relation (8.3) becomes in our case

ol 3 {0
A = log + z a, log - s (8.26)
(i) P | ()
0 _€(k) i=1 €
where £ =8 or ¢ . As mentioned in Section 2, once iO is fixed, we can
choose j, k arbitrarily. Thus we can choose
j =3, k=4 if io =1 or 2,
(8.27)
i=1, k=2 if iO =3 or 4
Therefore, for each € € ( ®, ¢ } we have four possibilities for A . For
each of these eight cases we have, as will be shown below,
38
C7 = 5.71x10 , C8 =6.17 ,
and therefore, by Lemma 8.5, if |Y] > 3 |, then for A = max |a,| we have
40 1=<i=<3
the upper bound C_, = 3.26x10 . As is easily checked, the only solutions of

9
either (8.24) or (8.25) with |Y| < 3 are those listed in the statement of
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the theorem. Therefore we may assume that |Y| > 3 , so that

A< 3.26x1040

Before we apply the reduction method of Section 3.8 we show that the

application of Lemma 2.4 yields the above constants C7, C8 . We apply this

result in the case of A given by (8.26). In this case, we compute the V. ('s

i
s appearing in A , as follows. If a; = |s§k)/5§J)|

for i =1, 2, 3 , then a; is a unit and hence ay (appearing in the

’

for the various o,

computation of h(ai) ) is equal to 1. Clearly, every conjugate of oy is in
absolute value less than
max (h)
BN

i min (h)| ’
1<h<a | €4

and Hi > 1 . Therefore, h(ai) < Hi , and we can take

K .
Vi = max [ log Hi’ |log|e§ )/eEJ)|| ]

(k)

Since the latter term equals the logarithm of either lei /EEJ)I or its

inverse, it follows that

Vi = log Hi
(iy) ; (i)

1f oy = 1€ 0 —§(J)[/|E 0 —§(k)[ , then all conjugates of oy are in
absolute value less than C3 . Therefore, h(ai) < (log aO)/d + log C3 R
where a, and d are as in the definition of h(a) for a = oy An upper
bound for a, can be computed as follows. Consider the algebraic numbers
Xip = %.(5(1)—g(h)) for i, he (1, ..., 4} with i = h . It can be
checked that the numbers X;p, are algebraic integers for £ =9 or ¢
Now, for each permutation o = (01020304) € Sa we consider the number
x(o) = )(0102/)(01‘73 (independent of 9, ), and the polynomial

Py = JI (X-x() ) .

UES4

Consider also the number

A = X .
l<i<h<sq D

Note that
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2 1 2 1
2= 55 N €0 = 5D
277 1=i<h<4 2
where D is the discriminant of the defining polynomial of £ , and

therefore A2 = 229 . On the other hand, the coefficients of P(X) are up to
the sign the elementary symmetric functions of x(o) for o € SA , and so
they are symmetrical expressions of the f(i)'s with rational coefficients.
This means that P(X) € Q[X] . On the other hand, by the definition of A ,
any coefficient of P(X) multiplied by A4 is a polynomial of the Xih’s
with coefficients in Z and therefore it is an algebraic integer. Combine

this with the fact that P(X) € Q[X] to see that 2292-P(X) € Z[X] . Hence,

since oy is a root of P(X) , its leading coefficient a is at most
2292 . To conclude, we have h(ai) < 2-(log 229)/d + log 03 and it is clear
that |log ail/d < log C3 . Since a, & Q@ we have d = 2 , so we can take

Vi = log 229 + log C3

Simple computations now show that

log H1 = 4.074586... , log H2 = 5.667432. ..
log H3 = 4.821584...

log C3 = 1.262065... if €& =19 ,

log C3 =1.893823... if & =9¢ ,

log 229 + log Cy < 7.327545...

Therefore we apply Lemma 2.4 (Waldschmidt) with n =4, D < 24, e(n) = 73,
(k) (k) (k) (i)
a, = il—— a, = 3 o, = "2 a £ ° _$<J>
L™ TGl T2 ] T3 LGy T4 (i) '
€ €3 €y ¢ 0 —§(k)
for € =9 or ¢ , and b1 =a; . +b2 =a,, b3 =a, ba =1, B=A,
Vl = log Hl , V2 = log H3 R V3 = V3 = log H2 , V4 = VQ = log 229 + log C3

Thus we find that
|A] > exp[-c7~(log A+ CS)J ,

with C7 = 5.71><1038 and 08 =6.17

We have now to apply the reduction process described in Section 3.7. In our
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situation we have to solve (8.9) with
4 n 4 40
K1 = CG = 6.38771x10 " , K2 - Eg = 1911 > 3.303 , K3 = 3.26x10
( K2 is estimated from below), and
A=2§+ ap py + a5k + aypy
where for § and the ui’s we have the following possibilities, in view of
(8.26) and (8.27):
fD_ 3 (2)_(3)
5§ =6 = log|>—=+—+~| or & =56, = log|>5—"+~
1 1 4 2 2 4 ’
(D_ @ fD_ @
< E(a) where & =9 or o , (8.28)
i .
By o= log 6(3) , for i=1, 2,3
i
or
3)_,. (1) 4y (1)
£ ""-¢ £ "-¢
§ =6 = log|>—75~ or § =256 = log|*——~—5~]
3 3 2 4 4 2
DD @ _ D
d 6(2) where &€ =9 or ¢ , (8.29)
i .
By o= log 5(1) , for i=1, 2, 3
i
Numerical details are given in Tzanakis and de Weger [1987]. We take
¢ = 10140 , and we work with the lattice with associated matrix
1 0 0
4 = 0 1 0
Note that in each of the four cases of (8.28) (resp. (8.29)) we have the same
lattice, Fl (resp. Fz ), say. In each case § = 0 , and we had no
numerical evidence that the ui's are QO-dependent. Therefore we worked as in

case (ii)

For each

each time

in Section 3.7.

of Section 8.4,

we have applied the integral version of the L3—a1gorithm, and

Ty
B, U, gt

we have computed the integral 3x3-matrices as defined

In our cases, the coordinates of the vectors of the reduced

bases (i.e. the elements of 8 ) turned out to have 46 to 48 digits, i.e. the
lengths of the reduced basis vectors are of the size of cé/3 , as expected.
In each of the eight cases we computed the coordinates S1» Sy 83 of
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with respect to the reduced basis bl’ b2, 23 of the lattice. From our

computations we found

jbo | > 3.21+7><10a6 in the case of lattice T, ,

1!

[§1| > 4.846x10A6 in the case of lattice F2 ,

[s.} > 0.029 in all 8 cases.

3
This means that in view of Lemma 3.5, in all cases iO =3 , and

46

(0 > 0.029-23.247x10"" > 4 708x10%%

Then the assumptions of Lemma 3.10 are fulfilled with n =3, vy =1, C = g

. B _ . 40 . : .
c = Kl, § = K2, XO = X1 = K3 , since Y27 K3 < 1.112x10 , which implies
1 140 4 40
A< §T§6§-log[10 -6.38771x10 " /3.26x10 ] < 72.8
It follows that A < 72. We repeat the procedure with K3 = 72 and
¢y = 1012 . We found from our computations
|§1| > 1.293X10a in the case of lattice Fl ,
Ihll > 1.092X104 in the case of lattice F2 R
”53” > 0.143 in all 8 cases.
This means that in view of Lemma 3.5, in all cases iO = 3, and

u(r,,x) > 0.143~§-1.092x10A > 7.807x10°

Then the assumptions of Lemma 3.10 are fulfilled, since /27-1(3 < 3.742x102 ,

which implies

A< ~10g[1012~6.38771x10A/72] < 10.5

1
3.303
It follows that A =< 10 . We enumerated all remaining possibilities, and

found no other solutions of (8.24) and (8.25) than mentioned in the theorem.

This completes the proof of Theorem 8.7, hence also that of Theorem 8.6. ]

The computations for the proof of Theorem 8.7 took 35 sec.
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8.6. The Thue-Mahler equation, an outline.

Let F(X,Y) be as in Section 8.1. Let Pys -4 Pg be fixed distinct prime

numbers. The diophantine equation

s 0y
F(X,Y) =+ 1 p,
. i
i=1
in the variables X, Y € Z , 0y, -0, DO € NO , with (X,Y) =1 , is known

as a Thue-Mahler equation. It was proved by Mahler [1933] that this equation
has only finitely many solutions, and by Coates [1970] that they can, at
least in principle, be determined effectively, since an effectively
computable upper bound for the variables can be derived from the p-adic
theory of linear forms in logarithms. For the history of this equation we

refer to Shorey and Tijdeman {1986}, Chapter 7.

We believe that it is possible to solve Thue-Mahler equations, not only in
principle, but in practice. This can be done by reducing the above mentioned
upper bounds, wusing a combination of real and p-adic computational
diophantine approximation techniques, based on the L3—a1gorithm for reducing
bases of lattices (cf. Sections 3.7, 3.8, 3.11 and 3.12). The method can be
considered as a p-adic analogue of the method for solving Thue equations, on

which we report in the preceding sections.

Such an idea (but without using the L3—algorithm) was used by Agrawal,
Coates, Hunt and van der Poorten [1980], who determined all solutions of the

equation

%2 - x%y 4 xv? e ¥? - an®
This is one of the only two examples in the literature where a Thue-Mahler

equation has been solved completely, the other one being

X043y -2
which was solved by Tzanakis [1984] by a different method. Both examples are
of the simplest kind, in view of the fact that the cubic field @Q(®) , where
9 1is a root of F(x,1) = 0 , has only one fundamental unit, and there occurs
only one prime. Therefore it 1is sufficient to use two-dimensional real
continued fractions and one-dimensional p-adic continued fractions, instead
of the more complicated L3—a1gorithm (which was not yet available in 1980).

With the use of the L3—a1gorithm the method can in principle be extended to
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the general situation, where there are more than one fundamental units, and
more than one primes. In a forthcoming publication, Tzanakis and the present

author plan to give details and worked-out examples.
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ALGORITHMEN VOOR DIOPHANTISCHE VERGELIJKINGEN.

SAMENVATTING.

Deze dissertatie gaat over het oplossen van diophantische vergelijkingen. Dat
zijn vergelijkingen waarbij de oplossingen beperkt zijn tot gehele getallen.
In dit boek worden alleen diophantische vergelijkingen bestudeerd die zijn op
te lossen met behulp van de methode van Gelfond-Baker. De gebruikte methode

kent ruwweg drie stappen.

In de eerste stap vormt men de vergelijking om tot een exponentiéle
vergelijking of ongelijkheid, d.i. één waarin de onbekenden alleen in de
exponenten voorkomen. Als zo’'n exponentiéle vergelijking drie, en =zo'n
exponentiéle ongelijkheid twee termen bezit, is ze gemakkelijk om te vormen
tot een ongelijkheid voor een p-adische respectievelijk reéel/complexe

lineaire vorm in logarithmen van algebraische getallen

A = log a

[ B=]

xi~1og oy

+
0 1

i
Hierin zijn de %y de onbekenden, die in Z 1liggen. Voor deze lineaire vorm

A geldt nu dat ze extreem dicht bij 0 1ligt voor grote waarden van de

onbekenden, nl. er zijn constanten c, § zodat met X = max|xi| geldt dat

|A] < c-exp(=6-X)

De tweede stap bestaat in het toepassen van één van de diepe resultaten van
de Gelfond-Baker theorie, die voor dergelijke lineaire vormen in logarithmen

van algebraische getallen ondergrenzen geeft van de vorm
|A] > exp[—(Cl+Cz-10g X)J

voor constanten Cl’ C2 . Het vergelijken van ondergrens en bovengrens voor

}A] levert een absolute bovengrens voor X op. Zo is het probleem eindig
geworden, maar nog niet triviaal. De gevonden bovengrens voor X is namelijk
vrijwel altijd bijzonder groot, in een typisch geval in de orde van grootte

van 1040



De derde stap van de methode beoogt nu alle oplossingen van de diophantische
vergelijking onder deze bovengrens te vinden met behulp van een computer. De
grootte van de bovengrens maakt het echter noodzakelijk dit op een slimme
manier te doen. Vrijwel altijd blijkt dat de werkelijk grootste oplossing ver
onder de bovengrens ligt. Daarom is het de moeite waard om naar methoden te
zoeken om dergelijke bovengrenzen te reduceren. In dit proefschrift, met name
in hoofdstuk 3, worden zulke methoden gegeven voor verschillende typen van
lineaire vormen A . Algemeen kenmerk van deze methoden is dat de redelijke
verwachting bestaat dat ze een bovengrens van grootte-orde X kunnen

0
reduceren tot de grootte-orde log X (bv. van lOAO tot 1000).

0
Deze methoden liggen op het terrein van de diophantische approximatie wvan
lineaire vormen. Ze =zijn soms gebaseerd op klassieke ideeén, =zoals het
kettingbreukalgorithme, soms ook op het recente 'L3—a1gorithme' voor het
reduceren van bases van roosters. Het bestaan van een extreem grote oplossing
van de diophantische vergelijking (in de orde van grootte van log XO tot
XO ) kan vertaald worden in het bestaan in een bepaald rooster van een
roosterpunt met een extreem korte lengte, of extreem dicht bij een gegeven

; 3 ; R
punt buiten het rooster. Het L -algorithme is in staat aan te tonen dat zulke

extreme roosterpunten niet bestaan, ofwel welke dat zijn.

Als eenmaal een voldoende gereduceerde bovengrens gevonden is, kunnen alle
oplossingen eronder gevonden worden met bv. een recht-toe-recht-aan methode.
Zo kan de diophantische vergelijking volledig worden opgelost in enkele

minuten rekentijd op een mainframe computer.

Deze methode wordt in dit proefschrift op wverschillende diophantische
problemen losgelaten. We geven een kort overzicht. Laten Py ...y P, Vvaste
priemgetallen zijn. Zij S de verzameling van positieve gehele getallen die

slechts deze priemgetallen als priemfactoren hebben.

Hoofdstuk 4 geeft een algorithme voor het bepalen van alle elementen van een
gegeven binaire recurrente rij (zoals de rij van Fibonacci) die in S
liggen. Een toepassing is de gegeneraliseerde Ramanujan-Nagell vergelijking

x2 + k € S voor een gegeven geheel getal k

Hoofdstuk 5 bestudeert het probleem van elementen in S die dicht bij elkaar

liggen, bv. 0 <x -y <4y met x, y €S . In hoofdstuk 6 komt de
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vergelijking x + y = z met x, y, z € S aan de orde. Beide problemen
leiden direct tot een ongelijkheid voor een lineaire vorm in logarithmen,
zodat ze de simpelste voorbeelden zijn van de toepassing van de diophantische
approximatiemethoden gebaseerd op het L3—algorithme. Ze worden volledig
opgelost voor Py, e P 2, 3, 5, 7, 11, 13 . Als bijprodukt wordt de

relatie

32-56~73 + 112 = 221~23
gevonden, die interessant is in verband met het de laatste tijd in het
middelpunt van de belangstelling van de getaltheoretici staand

"abc-vermoeden’ .

In hoofdstuk 7 wordt een methode gegeven om alle elementen X, y met x € §,

ty € S , zodat x + y een kwadraat is, te bepalen. Dat wordt uitgevoerd voor

P+ -0 Py T 2, 3, 5, 7 . Hoofdstuk 8 behandelt een methode om de algemene
Thue vergelijking F(X,Y) = m voor een irreducibele binaire vorm F wvan
graad > 3 met variabelen X, Y € Z , en met m € Z vast, volledig op te

lossen. Deze methode wordt toegepast op de diophantische vergelijking
y" = x7 - 4:x + 1 . Tenslotte wordt een eerste aanzet gegeven voor het
behandelen van de Thue-Mahler vergelijking F(X,Y) € § , met F als bij de

Thue vergelijking.
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STELLINGEN

behorende bij het proefschrift

Algorithms for diophantine equations

van

B.M.M. de Weger

6 januari 1988



1.

Als Grosswald meent dat Tijdeman het vermoeden van Catalan heeft bewezen, en
daarbij opmerkt, nota bene in een voetnoot, dat nog een eindige hoeveelheid
rekenwerk gedaan schijnt te moeten worden om het bewijs te completeren,
miskent hij de niet-triviale aard van dergelijk rekenwerk. Met de nu bekende
methoden uit de numerieke getaltheorie lijkt het praktisch onmogelijk om het

vermoeden van Catalan binnen redelijke rekentijd te bewijzen.

Referentie: E. Grosswald, Topics from the theory of numbers, 2nd. ed.,

Birkhduser, Boston, 1984, p. 259.

2.
Laat de priemgetallen Py, ..., P, gegeven zijn. Er bestaat een effectief
berekenbare positieve constante C , die alleen van de pi’s afhangt, zodat

k k

1 t
1 . .
voor alle n, kl, ey kt € NO met n! » Py Py geldt dat
kl kt
| n! - Py et Py | > exp(C-n/log n)

Er bestaat enige experimentele steun voor het vermoeden dat zelfs

k1 kt
| nt - Py .ot Py | > exp(C’'-n-log n)
eldt voor een positieve constante C' . Met de methoden van dit proefschrift
g P P

is het mogelijk om voor vaste m € Z alle oplossingen van de diophantische

vergelijking

expliciet te vinden.

Referentie: R.K. Guy, Unsolved problems in number theory, Springer, Berlin,

1981, Problem F23.

3.
Het vermoeden van  Antoniadis, dat de diophantische  vergelijking

31x2 - y3 - 1 alleen de oplossingen (x,y) = (0,1), (*¥2,5) heeft, is juist.

Referentie: J.A. Antoniadis, Uber die Kennzeichnung zweiklassiger imaginar-
quadratischen Zahlkérper durch Loésungen diophantischer Gleichungen, J. reine

angew. Math. 339 (1983), 27-81.



4.
De enige driehoeksgetallen die het produkt zijn van drie opeenvolgende gehele
getallen zijn de volgende zes: 6, 120, 210, 990, 185136, 258474216.

5.
Computerexperimenten geven steun aan het vermoeden (van Erddés en Stewart) dat
het aantal oplossingen van de gegeneraliseerde Ramanujan-Nagell vergelijking
n n
2 1

x" + k = Py -.‘.~psS de grootteorde exp(/s) heeft als s w .

6.

Het probleem van het vinden van de nulpunten van een ternaire recurrente rij
is equivalent met het oplossen van een derde-graads Thue-Mahler vergelijking
F(X,Y) = r~pn met p, ¥ € Z vast. Het is niet duidelijk of dit resultaat
eenvoudig gegeneraliseerd kan worden voor hogere orde recurrenties en hogere

graads Thue-Mahler vergelijkingen.

7.

Een p-adisch analogon van de stelling van Lagrange over de periodiciteit van
reéle kettingbreuken laat zich eenvoudiger formuleren en bewijzen in termen
van rijen p-adische benaderingsroosters dan 1in termen van p-adische

kettingbreuken.

Referentie: B.M.M. de Weger, Approximation lattices of p-adic numbers, J.

Number Th. 24 (1986), 70-89.

8.
De p-adische kettingbreuk volgens Schneider van Yc met ¢ € Z is niet
periodiek als c < 0 , en is wel periodiek als c = e2 + d~pk , met

d, e, keN, 15es§(p—1>, d| 2 ,pfd.

Referenties: Th. Schneider, Uber p-adische Kettenbriiche, Symposia Math. 1V,
(1970), 181-189,
P. Bundschuh, p-adische Kettenbriiche und Irrationalitat p-adischer Zahlen,

Elem. Math. 32 (1977), 36-40.



9.
Een didaktisch verantwoorde presentatie behoort een wezenlijk onderdeel van

iedere wetenschappelijke publicatie te zijn, en niet alleen van leerboeken.

10.

Fabrikanten dienen al bij ontwerp en produktie van artikelen er rekening mee
te houden dat hun produkten vroeger of later moeten kunnen worden verwijderd
zonder al te veel sporen na te laten. Dit geldt, behalve voor fabrikanten van
voor het milieu schadelijke stoffen, ook voor bijvoorbeeld fabrikanten van

zelfklevende etiketten.

11.
Het verdient aanbeveling om op stadsplattegronden het aantal verdiepingen van

hoge flatgebouwen te vermelden.

12.

De eerste wereldoorlog wordt wel de oorlog van de scheikundigen genoemd, de
tweede die van de natuurkundigen. Gezien de huidige ontwikkelingen in de
wapentechnologie ziet het er naar uit dat een eventuele derde wereldoorlog de
oorlog van de wiskundigen genoemd zal kunnen worden. De gangbare indeling van
de exacte wetenschappen doet dan ook al vermoeden dat dat wel eens de laatste

wereldoorlog zou kunnen zijn.

13.

Een auteur die het inleidende hoofdstuk van zijn boek of artikel het
volgnummer O meegeeft, wekt daarmee de indruk dat dat hoofdstuk niet tot het
eigenlijke werk behoort en dus weggelaten had kunnen worden, ofwel dat hij

niet kan tellen.

14,

Primum vivere, deinde promovere.
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